

ENGINEERING

LABORATORY

HYDROGEOLOGICAL INVESTIGATION

PROPOSED DEVELOPMENT, 375-417 KINGSTON ROAD, PICKERING, ONTARIO, L1V 1A3

400 Esna Park Drive, Unit 15
Markham, ON
L3R 3K2

Tel: (905) 475-7755
Fax: (905) 475-7718
www.fishereng.com

Prepared for:
375 Kingston Road Corporation &
401 Kingston Road Corporation

Project No. FH24-14411_V2

March 7, 2025

Issued to: 375 Kingston Road Corporation &
401 Kingston Road Corporation

Contact: Kirby Wilson
Decade Capital
1806 Avenue Road, Unit 2
Toronto, ON M5M 3Z1
Tel: 416-781-0623 Ext. 6
Email: kirby@decadecapital.ca

Project Name: Hydrogeological Investigation for Proposed Development

Project Address: 375-417 Kingston Road, Pickering, Ontario, L1V 1A3

Project Number: FH24-14411_V2

Issued on: March 7, 2025

A handwritten signature in black ink, appearing to read 'Clive Wiggan'.

Project Manager:
(Primary Contact)

Clive Wiggan, PhD., PMP., P.Eng.
Project Manager
clive@fishereng.com

A handwritten signature in blue ink, appearing to read 'Frank Fan'.

Report Reviewed By:

Frank Fan, PEng.,
Geotechnical Engineer
frank@fishereng.com

TABLE OF CONTENTS

1	INTRODUCTION.....	1
2	SITE CHARACTERIZATION AND PROJECT DESCRIPTION	1
2.1	SITE SETTINGS.....	1
2.2	TOPOGRAPHY	2
2.3	PROPOSED DEVELOPMENT	2
3	SCOPE OF HYDROGEOLOGICAL INVESTIGATION	2
4	PREVIOUS INVESTIGATIONS.....	3
5	FIELD AND LABORATORY WORKS	4
5.1	SUBSURFACE EXPLORATION	4
5.2	INSTALLATION OF MONITORING WELLS	4
5.3	LABORATORY ANALYSES.....	5
5.4	SITE SURVEY	5
6	SUBSOIL CONDITIONS.....	6
7	HYDROGEOLOGICAL STUDY	7
7.1	REGIONAL SURFICIAL AND BEDROCK GEOLOGY	7
7.2	HYDROGEOLOGICAL CONDITIONS	8
7.3	HYDRAULIC CONDUCTIVITY K MODELING RESULTS	10
7.4	GRAIN SIZE ANALYSIS FOR HYDRAULIC CONDUCTIVITY K	11
7.5	ESTIMATED INFILTRATION RATES.....	11
8	CONSTRUCTION DEWATERING & PERMANENT DRAINAGE.....	12
8.1	CONSTRUCTION GROUNDWATER DEWATERING	12
8.2	SEASONAL HIGH GROUNDWATER LEVELS.....	12
8.3	ACCOUNTING FOR ACCUMULATED PRECIPITATION.....	13
8.4	PERMANENT DRAINAGE	13
8.5	PERMIT TO TAKE WATER (PTTW)	14
8.6	GROUNDWATER QUALITY IN OVERBURDEN MONITORING WELLS	15
8.7	GROUNDWATER DEWATERING INFLUENCE ZONE.....	15
8.8	HYDROGEOLOGICAL IMPACT OF CONSTRUCTION DEWATERING.....	16
9	ONTARIO MINISTRY OF ENVIRONMENT WATER WELL RECORDS	16
10	DISCUSSION.....	19
11	LIMITATIONS.....	20

12 REFERENCES	21
APPENDIX A – SITE AND LOCATION MAPS AND PLANS	A
APPENDIX B – LOG OF BOREHOLES.....	B
APPENDIX C – MOISTURE CONTENT AND GRAIN SIZE DISTRIBUTION ANALYSES.....	C
APPENDIX D – SEWER BYLAW RESULTS.....	D
APPENDIX E – HYDRAULIC CONDUCTIVITY ANALYSES	E
APPENDIX F – DEWATERING RATES	F
APPENDIX G – WELL RECORDS	G
APPENDIX H – DRAINAGE GUIDELINES	H

1 INTRODUCTION

Fisher Engineering Limited (Fisher) was retained by 375 Kingston Road Corporation & 401 Kingston Road Corporation to carry out a hydrogeological investigation for the proposed development at the property addressed as 375-417 Kingston Road, Pickering, Ontario hereinafter referred to as the 'Site'.

The purpose of the Hydrogeological Investigation was to evaluate groundwater conditions with respect to the proposed redevelopment of the site.

The Hydrogeological Review has been prepared in accordance with the Ontario Water Resources Act, and Ontario Regulation 387/04.

The report has been prepared specifically and solely for the proposed development regarding hydrogeological aspects for design and construction.

The report was updated to include results of laboratory grain size analyses which were not available for the last report.

2 SITE CHARACTERIZATION AND PROJECT DESCRIPTION

2.1 Site Settings

The subject property is located at the southeast corner of the intersection of Rougemount Drive and Kingston Road, in the City of Pickering, Ontario and is bounded by Kingston Road to the north, beyond which is a mix of residential and commercial properties, Evelyn Avenue to the east, beyond which are houses and undeveloped land, Highway 401 to the south and Rougemount Drive to the west as shown on the Site Location Map, presented in Figure A1 of Appendix A.

The subject property, which is irregular in shape, consists of a commercial plaza at 375 Kingston Road, a vehicle servicing centre at 393 Kingston Road, a Montessori school at 405 Kingston and houses at 417 Kingston Road.

The site is located within the Toronto Source Protection Area, approximately 450m east of the Rouge River and 100m west of Petticoat Creek.

Provincially Significant Wetlands, associated with Petticoat Creek and Rouge River are located approximately 100m and 400m east and west respectively of the site.

The property is not located within a TRCA Regulated area based on the map of regulated areas shown in Appendix A (A8).

2.2 Topography

The site consists of a relatively flat portion extending from 375 Kingston Road (existing commercial plaza) towards 393 Kingston Road. Site grades then fall along 401 to 417 Kingston Road. Elevations vary generally from 106.43m at BH108, located at the southwest corner, to 102.28m asl at BH103, located at the northeast corner of the site.

Elevations within an approximate radius of 500m of the site vary generally from 110m asl at the north to 98m on HWY 401 to the south, to 73m asl in the area of Rouge River and Provincially Significant Wetlands to the west as shown on Figure A7 in Appendix A. Drainage is expected to follow the general topography towards Rouge River to the west and Lake Ontario to the south.

2.3 Proposed Development

Site plans, by Studio JCI, dated November 21, 2024, show a proposed mixed-use development consisting of two phases as follows:

- Phase 1 (393 to 413 Kingston Road): Two towers, 31 & 30 storeys, linked by a 4-storey podium and shared 2 underground levels. Finished P2 elevation is 7.5m below ground floor level.
- Phase 2 (375 to Kingston Road): Two towers, 32 and 33 storeys, linked by a 4-storey podium and shared 2 underground levels. Finished P2 elevation is 6.5m below ground floor level.
- Parkland dedication (417 Kingston Road)

Site plans, with proposed development, are shown in Appendix A.

3 SCOPE OF HYDROGEOLOGICAL INVESTIGATION

The Hydrogeological Investigation works were required to:

- 1) Establish groundwater conditions for the design of dewatering works, if required, prior to construction of the proposed building.
- 2) Determine the need for construction dewatering and permanent drainage and

- 3) Conduct calculations/analyses of the groundwater quantity and quality to be used for the necessary applications for permits prior to proceeding with construction dewatering and design of permanent drainage, if necessary.

The scope of this work generally consisted of the following:

- **Drilling/locating Monitoring Wells:** Drilling of monitoring wells in the overburden soils and reviewing / compiling borehole logs and onsite / laboratory testing.
- **Data Evaluation:** Evaluating the results of soil types, groundwater static levels, ground surface elevation, groundwater quality, flow direction and other available hydrogeological data for the site and their potential impact on the proposed development.
- **Hydraulic Conductivity Tests:** Conduct single well response tests and record groundwater level drawdown and recovery to model/calculate hydraulic conductivity.
- **Construction Dewatering and Permanent Drainage:** Calculate construction dewatering and permanent drainage rates.
- **Groundwater Quality Analyses.** Carry out laboratory analyses on groundwater to determine compliance with the Ontario Durham Sewer Use Bylaw No. 55-2013.
- **Groundwater Level Monitoring:** Conduct long-term monitoring of the groundwater levels to determine seasonal high-water levels.
- **Well Survey:** Carry out survey of drinking water wells within a 500m radius of the property.
- **Hydrogeological Report:** Prepare and submit a report detailing the findings and recommendations of the Hydrogeological Investigation.

4 PREVIOUS INVESTIGATIONS

Fisher Environmental carried out a Phase 2 ESA and Preliminary Geotechnical Investigation on 375 Kingston Road and submit reports under FE-P 21-11144 and FE-P 21-11145 respectively. Five (5) boreholes, BH1 to BH5, were drilled to approximate depth of 3.20m to 9.60m below prevailing grade. Three (3) of the boreholes were instrumented as monitoring wells, MW1, MW2 and MW4, with bottom of screens at depths of 6.12m to 8.42m bgs. Borehole logs from these investigations are presented in Appendix B. Locations of previously installed monitoring wells are shown on the site plan in Appendix A. Groundwater levels, measured in the previously installed monitoring wells, are also used in the report.

5 FIELD AND LABORATORY WORKS

Public and private utilities clearances were carried out by Ontario One-Call and Utility Marx, on behalf of Fisher Engineering, prior to drilling.

5.1 Subsurface Exploration

Subsurface exploration, in the overburden soils, for the hydrogeological investigation was conducted concurrent with drilling for the geotechnical investigation over the period December 17, 2024 to January 10, 2025 during which ten (10) boreholes were advanced generally to approximate depths of 12.65m to 30.94m below prevailing grades (elevations vary from 71.77m to 93.78m asl). Approximate locations of the boreholes and elevations are shown on the Borehole Location Plan at Appendix A.

A truck mounted drill rig (CME-55), equipped with solid stem augers, supplied by Terra Firma Services, was used to drill the shallow boreholes under direct supervision of Fisher Engineering personnel. The deeper boreholes, BH104 to BH107 and BH108 were drilled using mud rotary. Soil samples were taken at regular intervals using a split-spoon sampler advanced by means of the Standard Penetration Test (SPT) which was conducted in general accordance with ASTM Specification D1586. All recovered soil samples were placed in clear, sealable plastic bags in the field and transported to the Fisher Engineering laboratory for further examination, characterization and laboratory analyses.

A description of subsurface conditions encountered at each borehole location is presented in Appendix B - Log of Boreholes.

5.2 Installation of Monitoring Wells

All boreholes, drilled during the current investigation, were instrumented as monitoring wells on completion of drilling (MW101 to MW110) to be used for groundwater testing and sampling. The monitoring wells were installed at depths of 4.57m to 10.67m below prevailing grade and were constructed using 50mm (2") diameter PVC pipes with 3.05m (10') long screens. A clean silica sand pack was placed around the well screens and isolated with bentonite below prevailing grades. Previously installed monitoring wells, MW1, MW2 and MW4 were also installed with 3.05m (10') screens.

5.3 Laboratory Analyses

All soil samples were taken to the Fisher Engineering laboratory for further visual assessment and classification. Representative soil samples were selected and submitted to the laboratory as follows:

- Sixty-one (61) soil samples from BH101, BH103, BH105, BH107, BH108 and BH110 moisture content analyses.
- Twenty-six (26) samples for grain size analyses and
- Twelve (12) samples for hydrometer tests.

The laboratory samples were tested and classified in general accordance with the Unified Soil Classification System, ASTM D 2487, and Standard Practice for Classification of Soil for Engineering Purposes. The laboratory results for overburden soils are presented in Appendix C.

One (1) groundwater sample from MW104 was submitted to ALS Environmental laboratory for analyses of water quality under the Ontario Durham Sewer Use Bylaw No. 55-2013. Laboratory results are presented in Appendix D.

The soil samples recovered during the investigation will be stored in the Fisher Engineering laboratory for a period of 30 days after submitting the initial report and will be discarded thereafter unless instructed otherwise.

5.4 Site Survey

Elevations at borehole locations were interpolated / estimated from topographic survey plans, prepared as follows:

- by Aksan Piller Corporation Ltd., Association of Canada Land Surveyors & Ontario Land Surveyors, dated September 19, 2022 for 401 to 417 Kingston Road and
- by Donevan Fleischmann Petrich Ltd, dated June 15, 2021, for 375 Kingston Road.

Site survey record is presented at Appendix A.

Whilst it was assumed that no significant changes in grade have taken place since, elevations at borehole locations, based on this survey plan, should only be used for reference.

6 SUBSOIL CONDITIONS

Surface and subsurface conditions encountered at borehole locations are shown in Appendix B - Log of Boreholes and are summarized in the following sections. The logs include stratification at borehole locations along with detailed soil description. Variation in soil stratification may occur and should be expected between borehole locations and elsewhere on the site.

Asphalt/Granular Material/Fill – An approximately 100mm to 175mm thick layer of asphalt was encountered at the surface of all boreholes, except BH106 and BH110. The asphalt was underlain generally by 150mm to 530mm thick layer of asphalt except at BH102. Fill material, consisting of dark brown, sandy silt, with trace to some clay, gravel, topsoil and occasional cobbles was encountered below the granular material in BH106 and BH107. Fill/granular material depths and elevations are presented in Table 1.

Table 1: Fill Depths and Elevations

Borehole No.	Surface Elevation (m asl)	Depth of Borehole (m)	Elevation at Bottom of Borehole (m asl)	Depth of Fill (m)	Elevation at Bottom of Fill (m asl)
BH101	106.03	12.65	93.38	0.25	105.78
BH102	105.59	12.65	92.94	0.15	105.44
BH103	102.28	12.65	89.63	0.26	102.03
BH104	106.07	20.27	85.80	0.25	105.82
BH105	106.36	30.94	75.42	0.25	106.11
BH106	104.66	20.27	84.39	1.17	103.49
BH107	102.71	30.61	72.10	1.68	101.03
BH108	106.43	12.65	93.78	0.25	106.18
BH109	106.18	12.65	93.53	0.46	105.72
BH110	102.30	12.65	89.65	1.73	100.57
BH1	106.11	8.08	98.03	0.46	105.65
BH2	106.05	8.08	97.97	0.61	105.44
BH3	106.23	8.08	98.15	0.46	105.77
BH4	105.97	9.60	96.37	0.30	105.67
BH5	106.22	3.20	103.02	0.46	105.76

Greenish Grey Sand & Silt to Sand & Silt Till – Layers of native, greenish grey, moist, compact to very dense fine sand & silt to sand & silt till were encountered below the granular material in BH101 and fill soils in BH106, extending to depths of 1.17m (BH106) to 2.13m (BH101).

Brown to Grey Sand & Silt Till/Sandy Silt Till – Alternating layers of moist, brown becoming grey at greater depths, moist, dense to very dense sand & silt till to sandy silt till were encountered below the asphalt or granular layers extending to termination depths of 12.47m to 30.94m below prevailing grade.

Brown Clayey Silt Till/Sandy Clayey Silt Till – Layers of native, brown, moist, hard clayey silt till to very stiff sandy clayey silt till were encountered interbedded in the sandy silt till layers depth of: 2.13m & 6.25m in BH104 and at 1.68m & 21.95m bgs in BH107.

7 HYDROGEOLOGICAL STUDY

A hydrogeological study for the subject site was conducted based on the boreholes/wells' exploration, observation and site/laboratory testing. Groundwater details from the ten (10) newly installed, and three (3) existing monitoring wells were used in the Hydrogeological Study. The monitoring wells were constructed generally with 3.05m (10') long, 51mm diameter PVC slotted screen pipes, with the bases at approximate depths below existing grade as shown in Appendix B. Clean silica sand packs were placed around each well screen which was isolated with bentonite extending to slightly below existing grade.

The boreholes were observed to be opened and generally dry on completion of drilling.

7.1 Regional Surficial and Bedrock Geology

Review of the available surficial geological and hydrogeological information for the area shows that the soils comprise generally of Ice- Age Deposits: Glacial Lake Deposits – Lake Iroquois, deeper-water deposits of silt & clay (Ontario Geological Survey). Underlying bedrock is represented by shale, limestone, dolostone and siltstone of the Georgian Bay Formation; Blue Mountain Formation; Billings Formation; Collingwood Member; Eastview Member. Bedrock in the area is generally more than 50m below prevailing grade. Surficial geology and bedrock maps are presented in Appendix A.

The subsoils and hydrogeological conditions were observed and recorded during both the geotechnical and hydrogeological investigations. Based on the boreholes/wells' exploration, the subsurface soils on the site are dominated by brown to grey sandy silt till interbedded with layers of clayey silt till to sandy clayey

silt till in some areas. The subsurface soils observed during the field investigation are generally consistent with the surficial geology of the area.

7.2 Hydrogeological Conditions

The monitoring wells were generally dry on completion of drilling, except for MW102 and MW110 in which standing water was observed at 7.62m and 4.57m below prevailing grade (97.97m and 97.73m asl) on completion of drilling. The monitoring wells were purged and developed manually using bailers and allowed to fully recover prior to carrying out groundwater level measurements and sampling. Purging of the monitoring wells and sampling for sewer discharge analyses were carried out using standard procedures for sampling for hydrogeological investigations. Measured groundwater depths and elevations are summarized in Table 2.

Comments on Table 3:

The following general comments regarding groundwater conditions in the overburden soils at the site are based on the groundwater level data and the geotechnical investigation:

- The boreholes were observed to be open and generally dry on completion of drilling. Standing water was observed in BH102 and BH110 at depths of 7.62m and 4.57m below prevailing grade.
- Groundwater levels were measured during January and February at depths generally of 1.05m to 3.57m (100.16m to 105.45m asl) in the monitoring wells less than 9m deep. One higher water level of 0.62m bgs was observed in MW104 during January and is not considered representative of groundwater conditions on the site.
- The nearest bodies of surface water are Petticoat Creek and Rouge River located approximately 100m and 400m east and west respectively of the site. Provincially Significant Wetlands (PSW) associated with the creek and river valley systems are located in proximity to the site.
- Groundwater levels will be monitored approximately biweekly during the rainy season to determine highwater levels at the site.
- The site is located within the TRCA's jurisdiction but is not within a TRCA Regulated Area.

Table 2: Groundwater Depths and Elevations

Monitoring Well No.	Surface Elevation, m asl	Depth of Well, m bgs	Elevation at well base, m asl	In open BH on completion		10-May-21		13-Jan-25		22-Jan-25		5-Feb-25	
				GW level, m bgs	GW Ele, m asl	GW level, m bgs	GW Ele, m asl	GW level, m bgs	GW Ele, m asl	GW level, m bgs	GW Ele, m asl	GW level, m bgs	GW Ele, m asl
MW101	106.03	6.10	99.93	dry		n/a	3.57	102.46	3.41	102.62	2.59	103.44	
MW102	105.59	10.67	94.92	7.62	97.97		6.99	98.60	6.65	98.94	5.68	99.91	
MW103	102.28	4.57	97.71	dry			1.44	100.84	1.45	100.83	1.53	100.75	
MW104	106.07	7.62	98.45	n/a - mud rotary			0.62	105.45	1.05	105.02	2.42	103.65	
MW105	106.36	9.14	97.22	n/a - mud rotary			6.85	99.51	6.73	99.63	6.33	100.03	
MW106	104.66	7.62	97.04	n/a - mud rotary			1.96	102.70	2.05	102.61	1.96	102.70	
MW107	102.71	9.14	93.57	n/a - mud rotary			1.75	100.96	1.79	100.92	1.98	100.73	
MW108	106.43	4.57	101.86	n/a - mud rotary			1.34	105.09	1.35	105.08	1.60	104.83	
MW109	106.18	9.14	97.04	dry			3.24	102.94	3.26	102.92	3.40	102.78	
MW110	102.30	5.33	96.97	4.57	97.73		1.88	100.42	1.90	100.40	2.14	100.16	
MW1	106.11	7.54	98.57	dry		5.68	100.43	3.78	102.33	3.79	102.32	2.02	104.09
MW2	106.05	6.12	99.93	dry		4.32	101.73	3.52	102.53	3.57	102.48	2.47	103.58
BH3	106.23	8.08	98.15	dry		n/a							
MW4	105.97	8.42	97.55	dry		4.70	101.27	3.92	102.05	3.94	102.03	2.83	103.14
BH5	106.22	3.20	103.02	dry		n/a							

7.3 Hydraulic Conductivity K Modeling Results

Rising Head Slug Tests

Rising head slug tests (SWRT) were carried out in MW101, MW103, MW104, MW106, MW107, MW108 and MW110 on January 15 & 22, 2025. The water bearing media mainly consisted of layers of sandy silt till, interbedded with more permeable seams, where encountered, and were assumed to be unconfined, homogenous, isotropic and of uniform thickness. It was also assumed that the wells fully penetrated the water bearing soils. Data from the rising head tests were used to calculate the hydraulic conductivity values using Luthin's method.

Calculated values for hydraulic conductivity (k) are summarized in Table 3 and are representative of the water bearing soil characteristic consisting of till soils with more permeable seams within the screened depths. Details of the hydraulic conductivity analyses are presented in Appendix E.

It should be noted that hydraulic conductivity values calculated from field investigation were obtained using the average slope of the line of best fit for each test. Further analyses were carried out which show that the slope of the line of best fit falls between that of the slope for the initial recovery (fast) and the late-stage recovery (slower) in each falling head slug test. Based on engineering judgement and knowledge of the type of soils encountered on the site, and on similar sites, the slope of the average best fit line, for each test well, was used in determining hydraulic conductivity values for dewatering calculations.

Table 3: Summary of Single Well Response Tests and Hydraulic Conductivity Results

Test Wells	Well Surface Elevation (m asl)	Groundwater Depth (m)	Screen Elevation (m asl)	Variance of water head created (m)	30 Minutes/	Hydraulic Conductivity, K (Luthin's Method)	
					Recovery Percentage	m/s	m/day
MW101	106.03	3.38	99.93 - 102.98	2.2	31 mins / 10%	9.08E-08	0.008
MW103	102.28	1.45	97.71 - 100.76	2.13	31 mins / 11%	3.03E-07	0.026
MW104	106.07	1.03	98.45 - 101.50	4.67	31 mins / 6%	6.05E-08	0.005
MW106	104.66	2.05	97.04 - 100.09	2.69	31 mins / 90%	3.03E-06	0.261
MW107	102.71	1.79	93.57 - 96.62	5.305	31 mins / 2%	3.03E-08	0.003
MW108	106.43	1.34	101.86 - 104.91	2.73	31 mins / 9%	7.57E-08	0.007
MW110	102.30	1.90	96.97 - 100.02	1.63	31 mins / 13%	1.51E-07	0.013

7.4 Grain Size Analysis for Hydraulic Conductivity K

Representative samples from BH1, BH3, BH5, BH7 and BH10 were selected from depths associated with the recommended footing locations or change in soil stratigraphy and submitted to the laboratory for grain size distribution and hydrometer analyses. The results for the grain size distribution and hydrometer analyses are presented in Appendix C and summarized in Table 4. Hydraulic conductivity values estimated from laboratory tests results are expectedly lower than those from insitu tests as the laboratory tests do not accurately represent soil conditions in the field, including the presence of more pervious seams.

Hydraulic conductivity values estimated from grain size analyses, using Hazen number in this report, are not to be used for design purposes and are merely included for comparison with field results in terms of orders of magnitude. Any inherent inaccuracies are acknowledged.

Table 4: Hydraulic Conductivity Estimated from Grain Size Analysis

Location	Depth of soil sample (m)	Soil Classification	Estimated Hydraulic Conductivity (Hazen Number)	
			m/s	m/day
BH101	3.05-3.51	Silt & Sand, some Clay and Gravel	5.00E-06	0.432
BH101	6.1-6.56	Silt & Sand, some Clay, trace Gravel	1.50E-06	0.1296
BH105	3.05-3.51	Clayey Sandy Silt, trace gravel	3.00E-06	0.2592
BH105	6.1-6.56	Sand and Silt, some Clay, trace Gravel	3.50E-06	0.3024
BH106	3.05-3.51	Sandy Silt, some Clay, trace Gravel	1.50E-06	0.1296
BH106	4.58-5.03	Silty Sand, some Clay, trace Gravel	4.00E-06	0.3456
BH107	3.05-3.51	Sandy Silt, some Clay and Gravel	5.00E-06	0.432

7.5 Estimated Infiltration Rates

Soil conditions throughout the site may generally be described as sandy silt till interbedded with sandy clayey silt till. Based on field observations and the laboratory results, presented in Appendix C, the soils at typical depths for infiltration-based facilities may be classified as sandy silt till with trace gravel (SM). Approximate coefficients of permeability, based on Table 2 of the Supplementary Guidelines to the Ontario Building Code (1997), are in the range **10⁻⁵ – 10⁻⁷ m/s**, with percolation time T of 8 - 20 mins/cm, indicating medium to low permeability.

Field percolation tests will be needed, in the location and at the invert of any proposed infiltration-based LID facility to determine infiltration rates for design purposes.

It should also be noted that a 1m separation between seasonal highwater levels and the invert of any infiltration-based LID facility is required for design. Minimum distances to various structures should also be maintained.

8 CONSTRUCTION DEWATERING & PERMANENT DRAINAGE

8.1 Construction Groundwater Dewatering

The proposed development will comprise two phases, each consisting of condominium towers with two underground levels. The following assumptions were made in estimating construction groundwater dewater rates for the new buildings with 2UG levels:

Phase 1 Development:

- a. Footprint for 2 UG levels – 4,001m².
- b. Average hydraulic conductivity value of 5.34×10^{-7} m/s.
- c. Average groundwater levels of 101.27m asl.
- d. Average finished lowest floor elevation of 96.01m asl with footings another 1.2m below.

Phase 2 Development:

- a. Footprint for 2 UG levels – 4,734m².
- b. Average hydraulic conductivity value of 5.34×10^{-7} m/s.
- c. Average groundwater levels of 103.46m asl.
- d. Average finished lowest floor elevation of 99.67m asl with footings another 1.2m below.

Based on the calculations, shown in Appendix F, construction groundwater dewatering flowrates of **22.81 and 19.34 m³/day (22,810 and 19,340 L/day)** were estimated for Phases 1 & 2 construction respectively. Factored construction groundwater dewatering flowrates of **34,220 and 29,010 L/day** are applicable with the assumed footing elevation (**FS of 1.5**).

8.2 Seasonal High Groundwater Levels

Groundwater levels in the newly installed, and existing, monitoring wells will be measured throughout the rainy season to determine seasonal highwater levels at the site. An average of the higher groundwater elevations observed so far in the shallow monitoring wells, covering each development phase, was used

to estimate construction groundwater dewatering rates. An average groundwater level of 1.42m bgs (102.09m and 104.74m asl for Phase 1 & 2 respectively) was used to determine permanent drainage rates.

8.3 Accounting for Accumulated Precipitation

Provisions should be made to pump accumulated water from the excavation areas during construction, particularly following a period of heavy rainfall. For example, 25mm rainfall in 24 hrs may result in accumulation of approximately 100 and 118m³ in the excavated areas for Phase 1 & 2 development respectively based on assumptions stated previously. Subsurface soils at the site are dominated by sandy silt till interbedded with sandy clayey silt till. Consequently, some ponding of rainwater may be expected. Conservative accumulated precipitation volumes of **25 m³/day** may therefore be assumed for planning purposes for both phases of the development. Accumulated precipitation may be stored on site for subsequent disposal to an MECP-licensed facility or be discharged to the public sewer system with permission.

Maximum construction discharge rates, taking into consideration accumulated precipitation volumes, range from:

Unfactored: 47.81 m³/day (47,810 L/day) & 44.34 m³/day (44,340 L/day) for Phase 1 & 2.

Factored: 59.22 m³/day (59,220 L/day) & 54.01 m³/day (54,010 L/day) for Phase 1 & 2.

8.4 Permanent Drainage

The monitoring wells were generally dry on completion of drilling except for MW102 and MW110 in which groundwater levels were observed at depths of 7.62m and 4.57m (97.97m and 97.73m asl) in the open boreholes. Groundwater levels increased in January and are expected to be higher during the rainy season. Observed groundwater levels in the shallow monitoring wells vary from 1.05m to 3.57m below prevailing grades (100.16m to 105.45m asl). For the buildings with 2UG levels some amount of groundwater will be expected. This means that permanent under-slab and perimeter drainage will be required under groundwater conditions observed during the investigation. **Permanent drainage rates of 18.67 m³/day and 16.69 m³/day** were estimated for Phase 1 and 2 developments respectively as shown in Table 5. Factored permanent drainage rates of **28.01 m³/day (28,010 L/day) and 25.03 m³/day (25,030 L/day)** should be used for planning purposes for Phase 1 & 2 developments with 2UG levels.

Table 5: Summary of Construction Dewatering and Permanent Drainage Rates

Construction Units		PHASE 1 - 31 & 32 Storeys with 2 UG levels	PHASE 2 - 32 & 33 Storeys with 2 UG levels
Assumed Elevation of Footings, m asl		94.81	98.47
Construction Dewatering Rates Q, (m³/day)	Unfactored	22.81	19.34
	Factored	34.22	29.01
Permanent Drainage Rates Q, (m³/day)	Unfactored	18.67	16.69
	Factored	28.01	25.03
Assumed Area, m²		4001	4734
Accumulated precipitation (m³/day)		25.00	25.00
Total Construction Dewatering (m³/day)		59.22	54.01
Radius of Influence (m)		16.35	13.13

8.5 Permit to Take Water (PTTW)

As the calculated total construction dewatering flowrates (factored) for Phase 1 and 2 developments, including accumulated precipitation, will be more than 50 m³/day, registration on the MECP Environmental Activity and Sector Registry (EASR) for Water Taking will be required for construction based on assumptions in the preceding.

An application for permit to take water (PTTW) will not be required for permanent drainage as the daily flowrate for each phase of the development will be less than 50,000 L/day. It should be noted however that if the two phases of the development are combined as one address, then a permit to take water will be required for permanent drainage as the combined total daily discharge rate will be more than 50,000 litres.

8.6 Groundwater Quality in Overburden Monitoring Wells

One unfiltered groundwater sample was collected from monitoring well MW104 (January 16, 2025) and submitted to ALS laboratory for analyses of parameters under the Ontario Durham Sewer, Storm and Sanitary Sewer By-Law (55-2013). The groundwater sample for sewer discharge analyses was collected using bailers after the well was purged. The results of analyses for groundwater quality, under the Ontario Durham Sewer Use By-Law, show compliance with all parameters except as listed in Table 6.

Table 6: Results from Sewer Use Bylaw tests

Parameters	Guide Limits		Results
	Table 1 (Sanitary Sewer)	Table 2 (Storm Sewer)	
Total Suspended Solid, mg/L	350	15	77.7
Biochemical Oxygen Demand (BOD), mg/L	300	15	652
Chloroform, ug/L	40	2	4.98

Based on the results, presented in Table 6, pre-treatment of the groundwater will be required prior to discharging to the public storm or sanitary sewer systems. As the exceedance is not significant, this can be done by using a settlement tank or by filtration for suspended solids. Commercially available treatment systems are available to treat other exceedances.

It should be noted however that testing of groundwater at the depths observed during the investigation would not be representative of the water that might accumulate during a high rainfall event. Any accumulation of precipitation occurring in the excavation during construction, that may require offsite discharge, will have to be tested at the time of the event to determine the quality of water for discharge. It is also recommended that resampling of the groundwater be carried out closer to construction.

8.7 Groundwater Dewatering Influence Zone

Based on the field investigation, the soils to the proposed excavation depths are dominated by silty sand till interbedded with sandy clayey silt till at further depths. The estimated construction dewatering quantities are based on the worst-case groundwater conditions that might occur during the construction period for each development phase. Based on the low groundwater recharge rates observed during rising

head slug tests, it would be expected that construction groundwater dewatering may be achieved by pumping from sump pits as required. Consequently, groundwater dewatering influence zones will be less than the calculated 16.35m and 13.13m for the buildings with 2UG levels.

8.8 Hydrogeological Impact of Construction Dewatering

During the investigation, based on the conceptual drawings provided to Fisher Engineering and as outlined in the preceding, it was determined that there will not be any negative impact to the natural environment, Durham Region Sewer works nor surrounding properties due to construction dewatering because of the relatively small quantity of water, types of soils and the depth at which groundwater was encountered. No groundwater induced depression at surface level is expected for typical dewatering to facilitate construction of the buildings with 2UG levels. Consequently, it is not expected that construction dewatering will impact public infrastructure, the natural environment nor will there be any settlement issues.

9 ONTARIO MINISTRY OF ENVIRONMENT WATER WELL RECORDS

The MECP Water Well Records for private supply wells were obtained to determine characteristics of existing private wells within a 500m radius of the subject Site. A total of fifty-nine (59) well records were reviewed from the MECP online well record mapping resource. Seven (7) supply wells were observed with four (4) decommissioning records for supply wells. Other supply wells may have been decommissioned and not reported.

Five (5) of the supply wells were installed in the overburden soils, while two (2) were installed in shale/limestone. The overburden supply wells were installed at depths of 44 to 204 feet, but generally between 102 and 204 feet. The wells installed in shale were to 200 to 218 feet. A summary of the well characteristics for seven (7) water supply wells within 500m of the Site is presented in Table 7 with details in Appendix G.

The MECP Water Well records for water supply wells surrounding the subject site show that water was encountered at depths of 44 to 202 feet during installation, with an average approximate depth of 113.25 feet. Recommended pumping depths vary between 95 and 204 feet, with an average recommended depth of 149.67 feet. Recommended pumping rates vary between 0.5 and 6.7 gpm, with an average recommended rate of 2.8 gpm.

No further large-scale water takings capable of causing adverse impacts to groundwater quantity were identified within 500m of the Site boundary.

Based on the low quantity of groundwater encountered during the investigation, and the depth at which excavation for the proposed buildings will extend, construction groundwater dewatering is not expected to impact the quality or quantity of water in supply wells, if any, in proximity to the site.

Table 7. MECP details of wells within 500m radius of Site boundary

No	Well ID	Date Completed	Well Completion	Well Type	Bedrock depth, feet	Water Found at, feet	Static Water Level, feet	Well Depth, feet	Recommended pumping rate, GPM	Recommended Pumping Depth, feet
1	910095888	28-Nov-94	n/a	Abandoned	n/a	n/a	n/a	29	n/a	n/a
2	1915420	8-Nov-01	n/a	Abandoned	n/a	n/a	n/a	32.5	n/a	n/a
3	4601870	6-May-57	Shale	Commercial Water Supply (Abandoned)	128	No Water Found	n/a	200	n/a	n/a
4	4601915	14-Jun-64	Limestone	Domestic (Abandoned)	133	No Water Found	n/a	218	n/a	n/a
5	4601916	9-Sep-67	Gravel	Domestic	n/a	102	90	102	2	95
6	4601918	17-Nov-65	Stones	Domestic (Abandoned)	n/a	No Water Found	n/a	130	n/a	n/a
7	4601919	15-Mar-47	Gravel	Domestic	n/a	105	25	204	6.7	204
8	4601920	21-Mar-62	Clay	Domestic	n/a	44	44	45	0.5	No Pump
9	4601921	17-Mar-67	Rock	Domestic (Abandoned)	167	202	75	202	2	150
10	4601923	17-Dec-65	Coal Tar, Possible Shale	Domestic (Abandoned)	122	No Water Found	n/a	200	n/a	n/a
11	7227606	29-Jul-14	n/a	Decommissioned	n/a	n/a	5	14	n/a	n/a
12	7338107	5-Jul-19	n/a	Decommissioned	n/a	n/a	n/a	24	n/a	n/a

10 DISCUSSION

1. Hydraulic conductivity values (k) calculated from on-site single well response tests, in overburden monitoring wells, are in the range 3.03×10^{-8} to 3.03×10^{-6} m/s (0.003 to 0.261 m/day). These are representative of the water bearing soils consisting of sandy silt till with interbedded sandy clayey silt till within the expected excavation depths.
2. Construction groundwater dewatering flowrates of 22.81 and 19.34 m³/day were estimated for Phases 1 and 2 of construction respectively.
3. Permanent under-slab and perimeter drainage will be required for the buildings with 2UG levels. Permanent drainage rates of 22.81 to 2.26 m³/day are applicable.
4. A factor of safety of 1.5 should be applied to construction groundwater and permanent drainage rates.
5. An additional volume of 25 m³/day should be added to the factored construction groundwater dewatering for each development phase to account for accumulated precipitation.
6. Registration on the MECP's EASR Website for water taking during construction will be required.
7. An application for PTTW will not generally be required for each development phase for permanent drainage. If, however, both development phases are combined, then an application for PTTW will be required for permanent drainage.
8. Based on the subsurface investigation, rising head slug tests & analyses and types of soils at the expected excavation depth, recharge of groundwater is relatively slow. Construction dewatering may therefore be handled by pumping from sump pits.
9. Exceedances of storm and sanitary sewer quality were observed in groundwater analyses for sewer discharge. Treatment of the groundwater may therefore be required before it can be discharged to the public sewer system.
10. It should be noted that if it is intended that any accumulated water, following periods of heavy rainfall, be discharged into the public sewer, then a permit to discharge would be required along with laboratory analyses to ensure compliance with the Regional Sewer Use Bylaws.
11. Construction dewatering rates presented in the preceding are based on common practice and reasonable assumptions for the site.

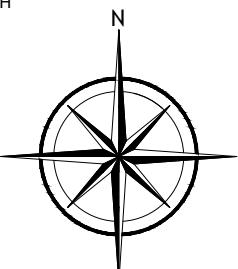
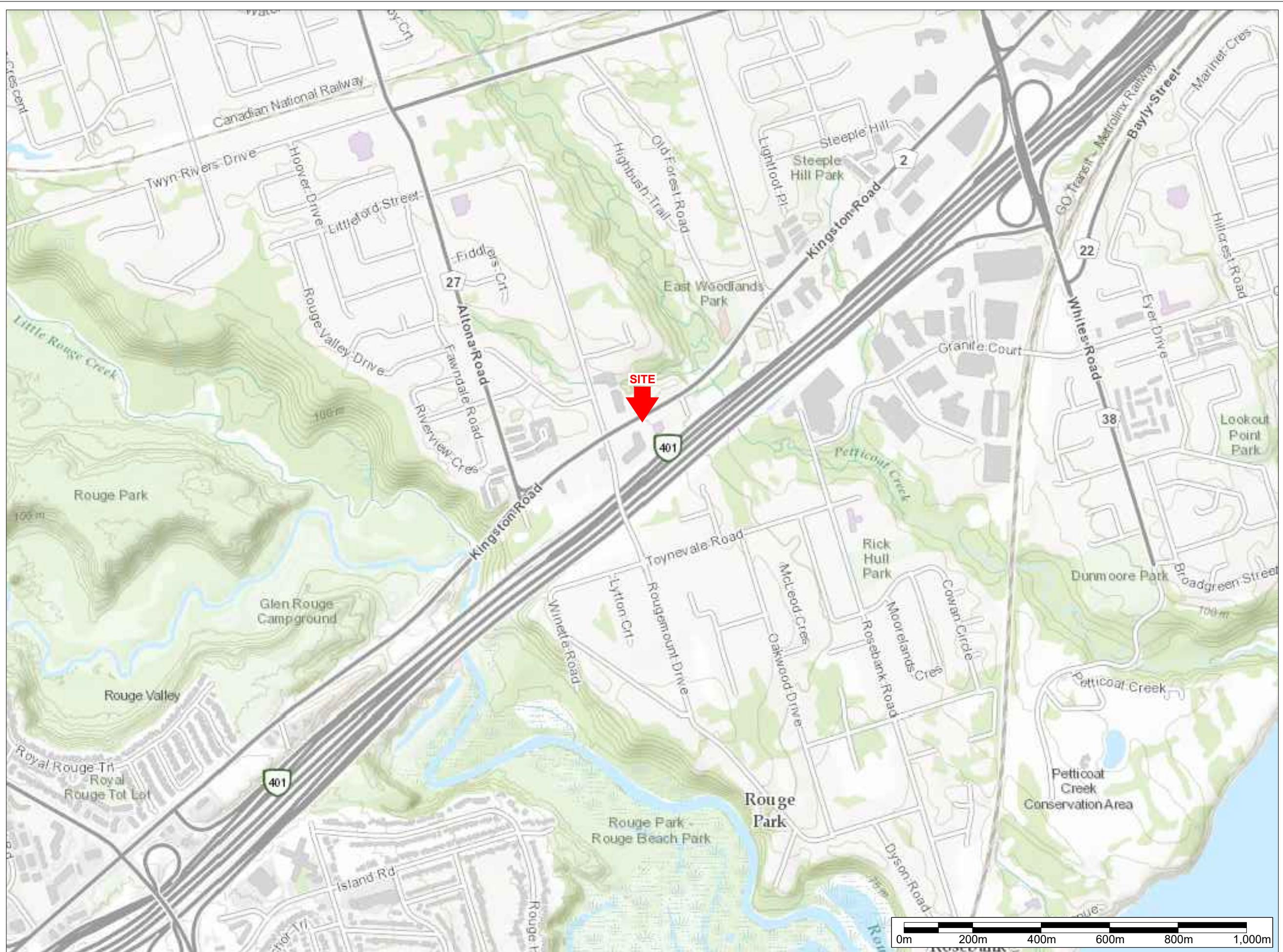
11 LIMITATIONS

This report is limited in scope to those items specifically referenced in the text. The discussions and recommendations presented in this report are intended only as guidance for the named client, design engineers and those directly associated with implementing, regulating and monitoring of the project. The information on which these recommendations are based is subject to confirmation by engineering personnel at the time of construction. Localized variations in the subsoil conditions may be present between and beyond the boreholes and should be verified during construction.

As more specific subsurface information becomes available during excavations on the Site, this report should be updated. Contractors bidding on or undertaking the work should decide on their own investigations, as well as their own interpretations of the factual borehole results. This concern specifically applies to the classification of the subsurface soil and the potential reuse of these soils on/off Site. Contractors should draw their own conclusions as to how the near surface and subsurface conditions may affect them.

12 References

1. CTC Source Protection Region (2015). Approved Source Protection Plan. Retrieved from: https://trca.ca/wp-content/uploads/2016/04/CTC_SOURCE_PROTECTION_PLAN_FULL.pdf
2. Low Impact Development Stormwater Management Planning and Design Guide (2010). Version 1.0, TRCA and CVC. Retrieved from: https://cvc.ca/wp-content/uploads/2014/04/LID-SWM-Guide-v1.0_2010_1_no-appendices.pdf
3. Ministry of Environment and Climate Change (2003), Stormwater Management Planning and Design Manual. Retrieved from: <https://www.ontario.ca/document/stormwater-managementplanning-and-design-manual-0>
4. Toronto and Region Conservation Authority (2012), Stormwater Management Criteria, Version 1.0.

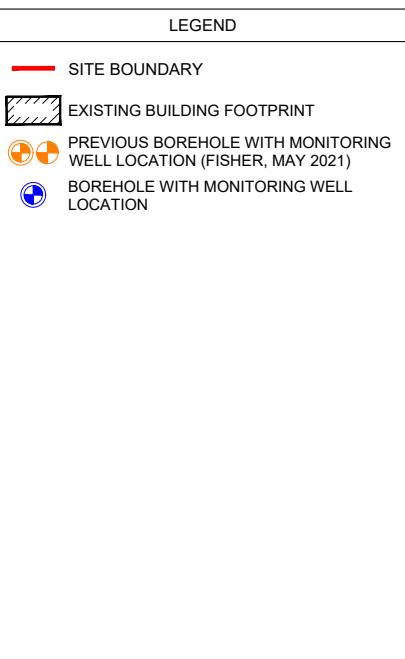
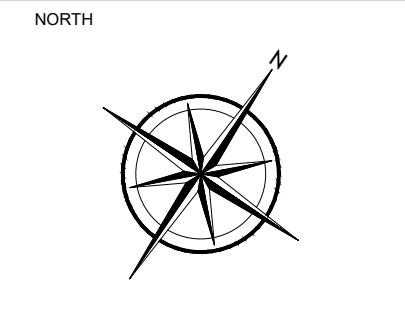
APPENDIX A – SITE AND LOCATION MAPS AND PLANS

F i s h e r E n g i n e e r i n g L i m i t e d

Project No. FH24-14411_V2 March 7, 2025

LEGEND

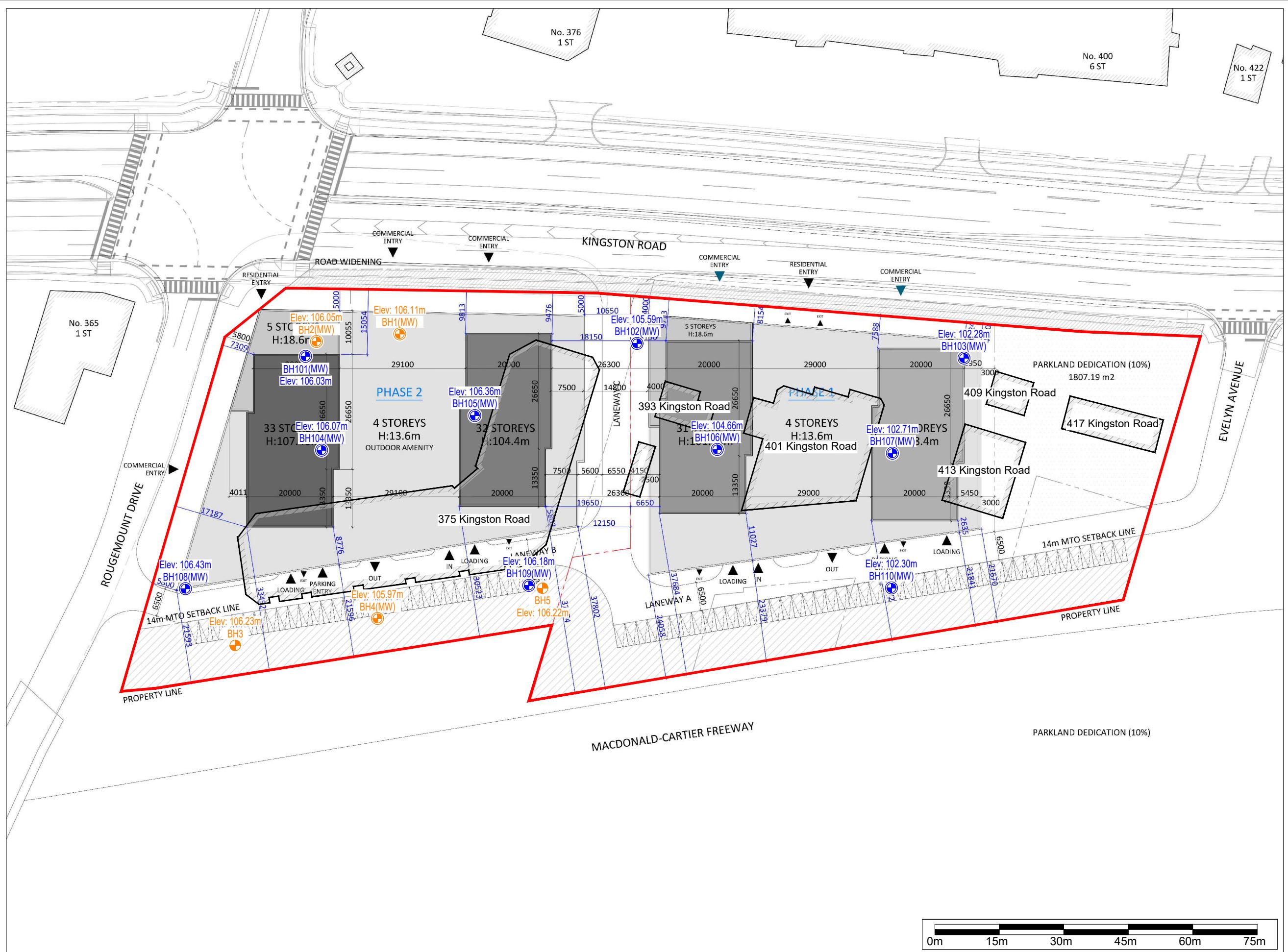
— SITE BOUNDARY

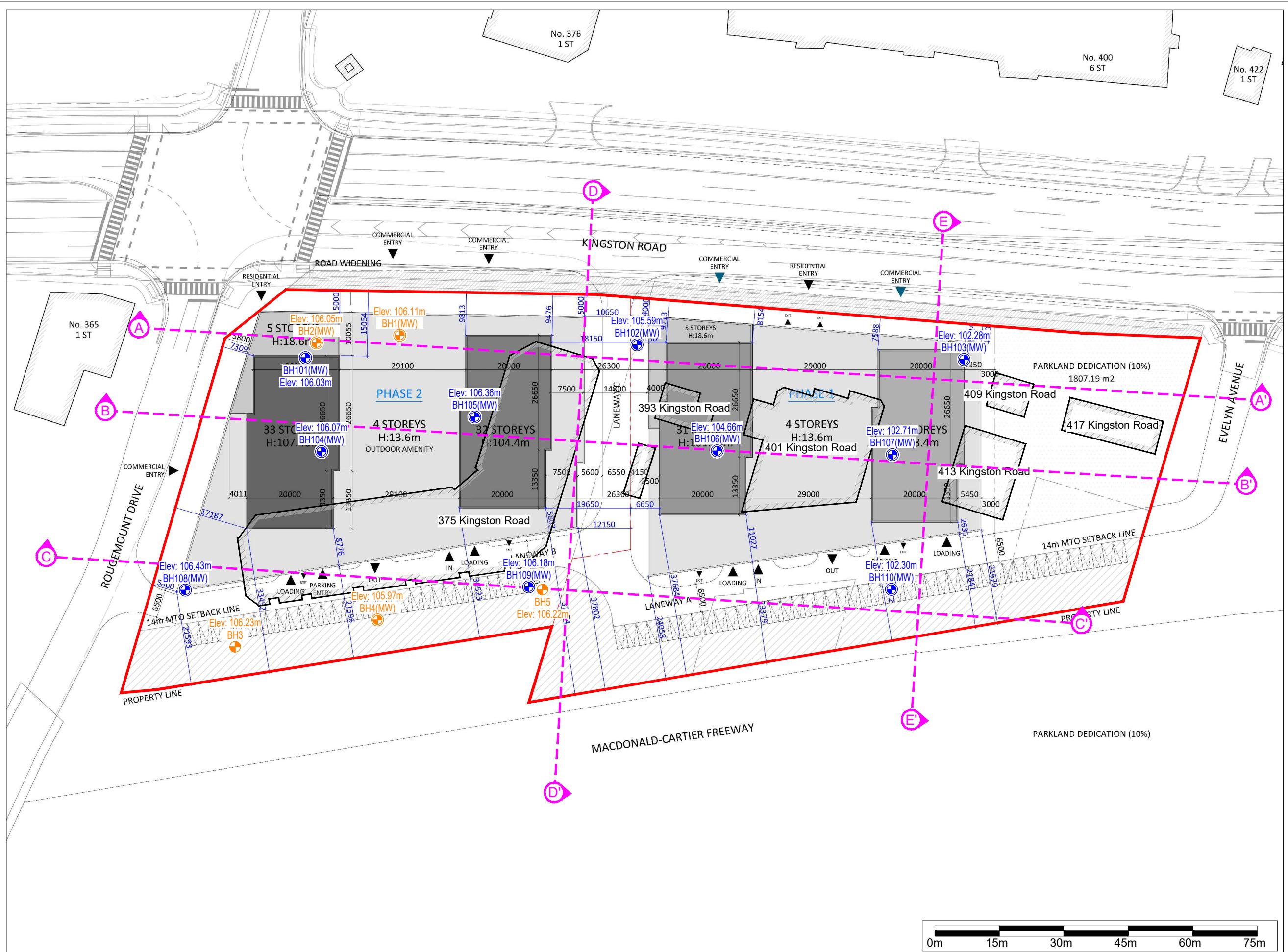


PROJECT NAME AND ADDRESS
**GEOTECHNICAL AND
HYDROGEOLOGICAL
INVESTIGATION**

375-417 Kingston Road,
Pickering, ON

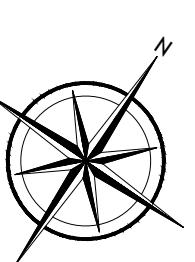
FIGURE A1:
SITE LOCATION MAP

PROJECT NO.	SHEET NO.
FE 24-14410/11	
DATE	
15 January 2025	
SCALE	AS SHOWN


A1



PROJECT NAME AND ADDRESS
GEOTECHNICAL AND HYDROGEOLOGICAL INVESTIGATION
375-417 Kingston Road,
Pickering, ON


FIGURE A2:
SITE PLAN SHOWING EXISTING BOREHOLE / MONITORING WELL LOCATIONS

PROJECT NO.	SHEET NO.
FE 24-14410/11	
DATE	
15 January 2025	
SCALE	
AS SHOWN	

400 Esna Park Dr., #15 Tel: 905 475-7755
Markham, Ontario
L3R 3K2

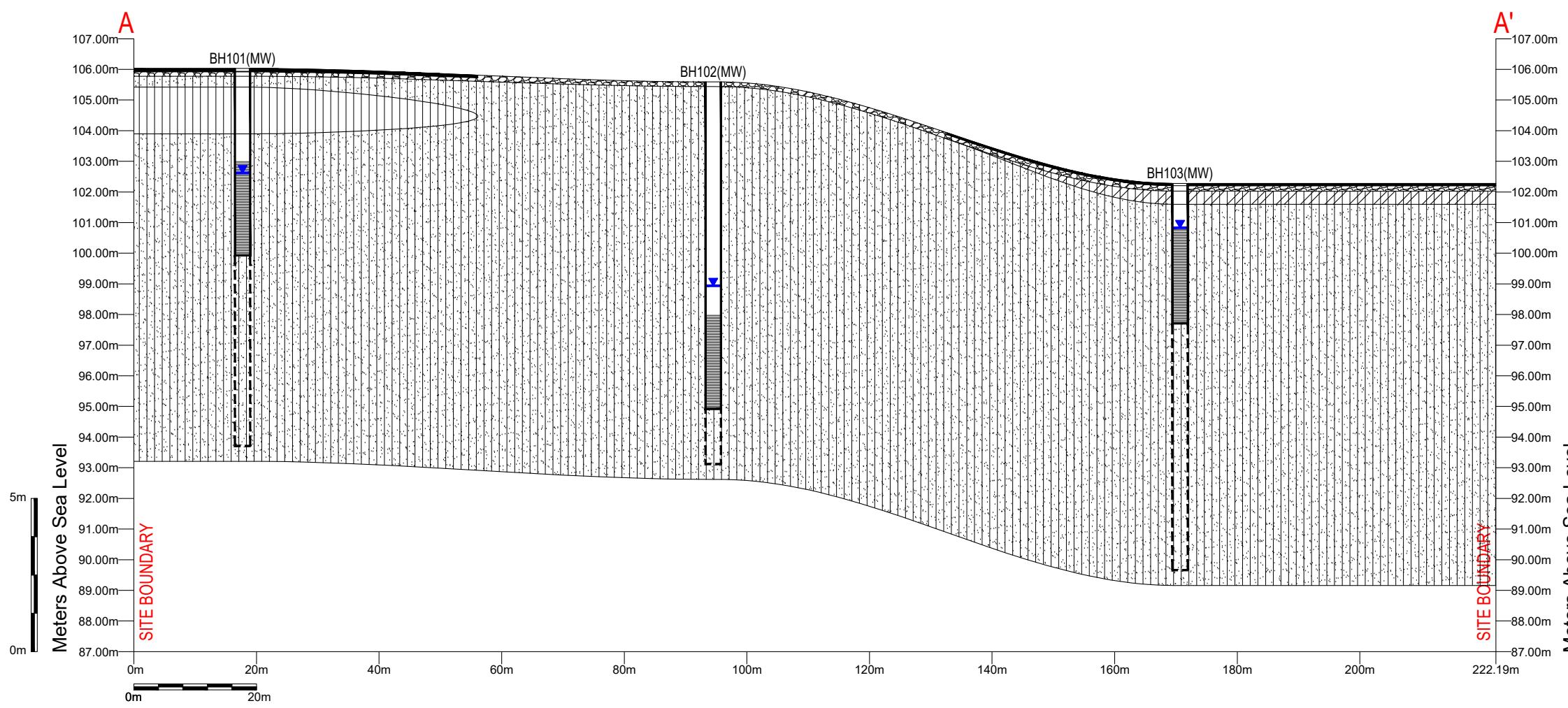
LEGEND

SITE BOUNDARY
EXISTING BUILDING FOOTPRINT
PREVIOUS BOREHOLE WITH MONITORING
WELL LOCATION (FISHER, MAY 2021)
BOREHOLE WITH MONITORING WELL
LOCATION
 CROSS SECTION MARK

PROJECT NAME AND ADDRESS

GEOTECHNICAL AND HYDROGEOLOGICAL INVESTIGATION

375-417 Kingston Road,
Pickering, ON


FIGURE A3:
**SITE PLAN WITH CROSS SECTION
CUT PLANES**

PROJECT NO.	FE 24-14410/11
DATE	15 January 2025
SCALE	AS SHOWN
SHEET NO.	A3

NORTH

LEGEND

ASPHALT
GRANULAR
SAND
SILT
GROUNDWATER POTENTIOMETRIC LEVEL

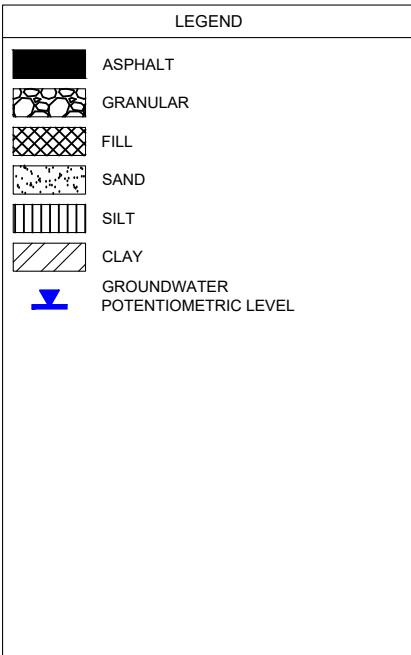
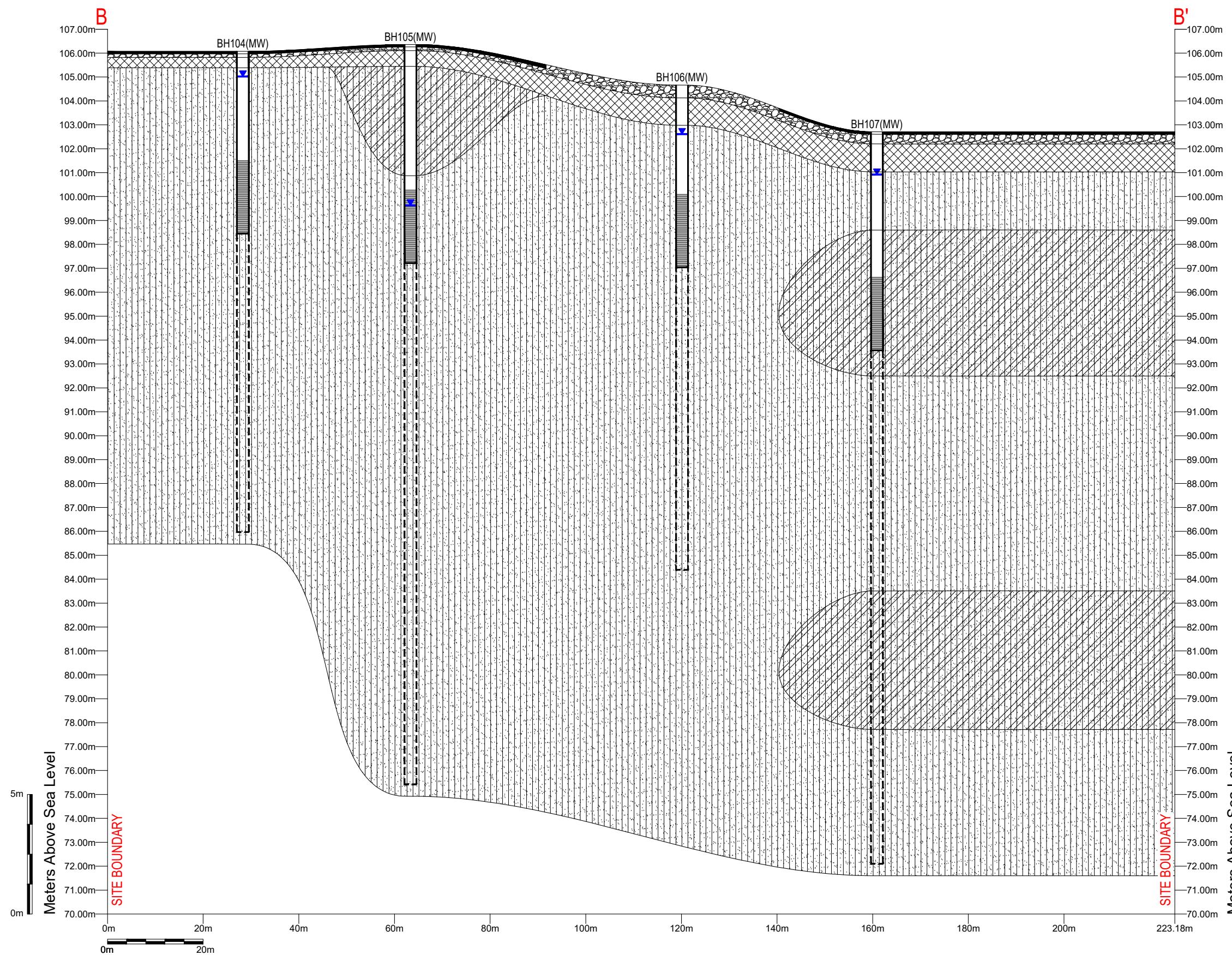

PROJECT NAME AND ADDRESS
**GEOTECHNICAL AND
HYDROGEOLOGICAL
INVESTIGATION**
375-417 Kingston Road,
Pickering, ON

FIGURE A4.1:
CROSS-SECTION A - A'

PROJECT NO.	SHEET NO.
FE 24-14410/11	
DATE	
11 February 2025	
SCALE	
AS SHOWN	

A4.1


NORTH

PROJECT NAME AND ADDRESS
**GEOTECHNICAL AND
HYDROGEOLOGICAL
INVESTIGATION**
375-417 Kingston Road,
Pickering, ON

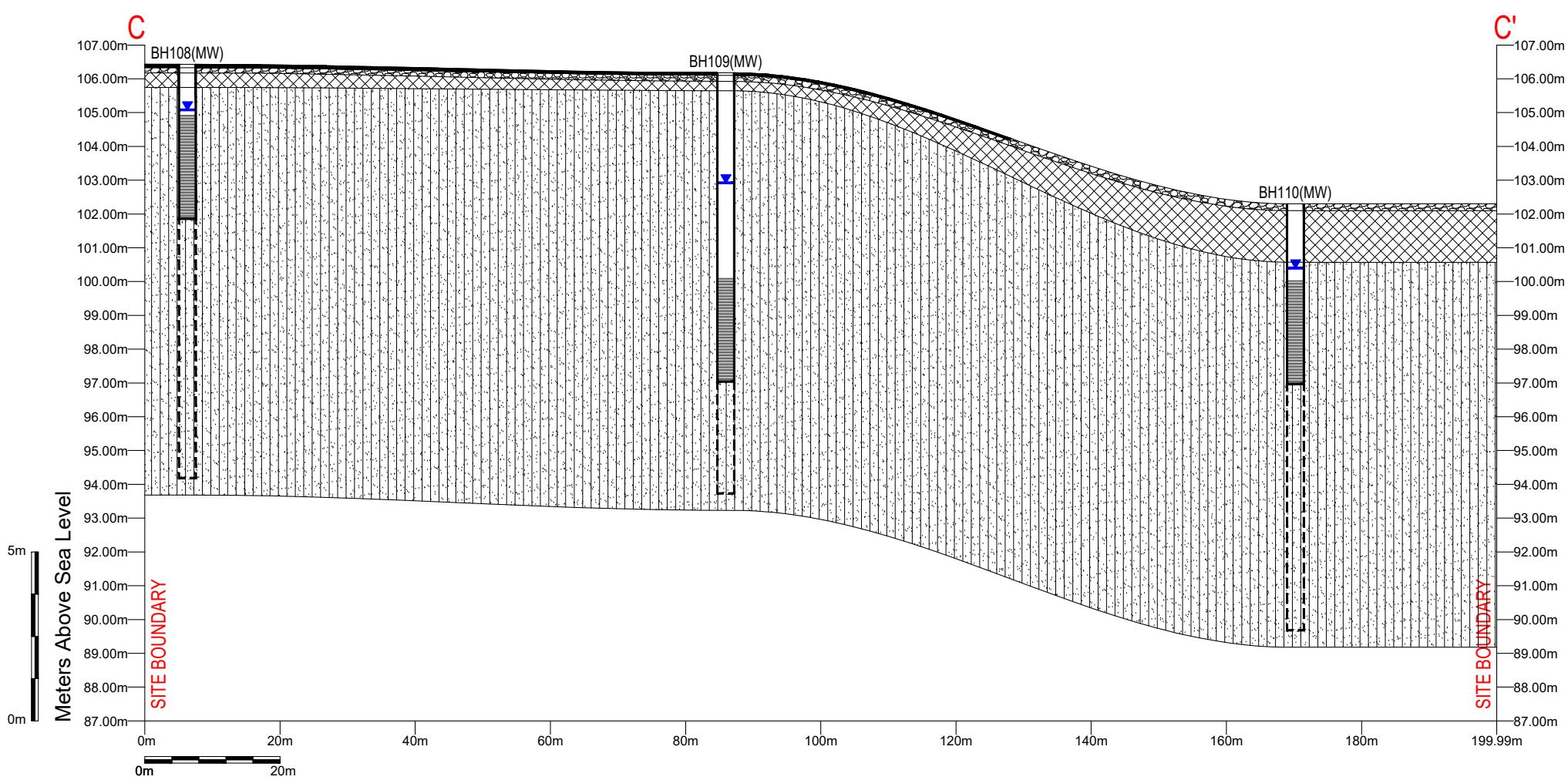
FIGURE A4.2:
CROSS-SECTION B - B'

PROJECT NO.	FE 24-14410/11	SHEET NO.
DATE	11 February 2025	
SCALE	AS SHOWN	

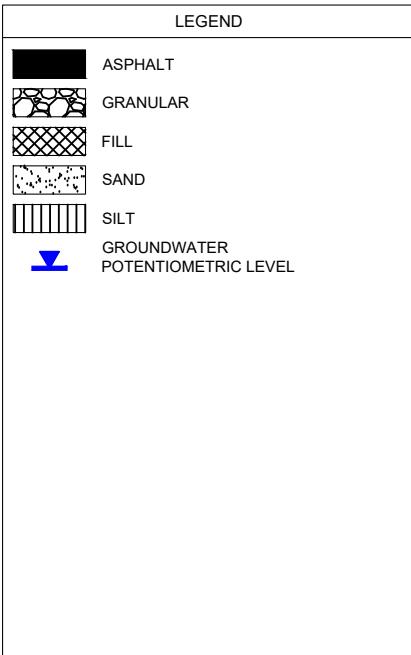
A4.2

NORTH

LEGEND


ASPHALT
GRANULAR
FILL
SAND
SILT
GROUNDWATER POTENTIOMETRIC LEVEL

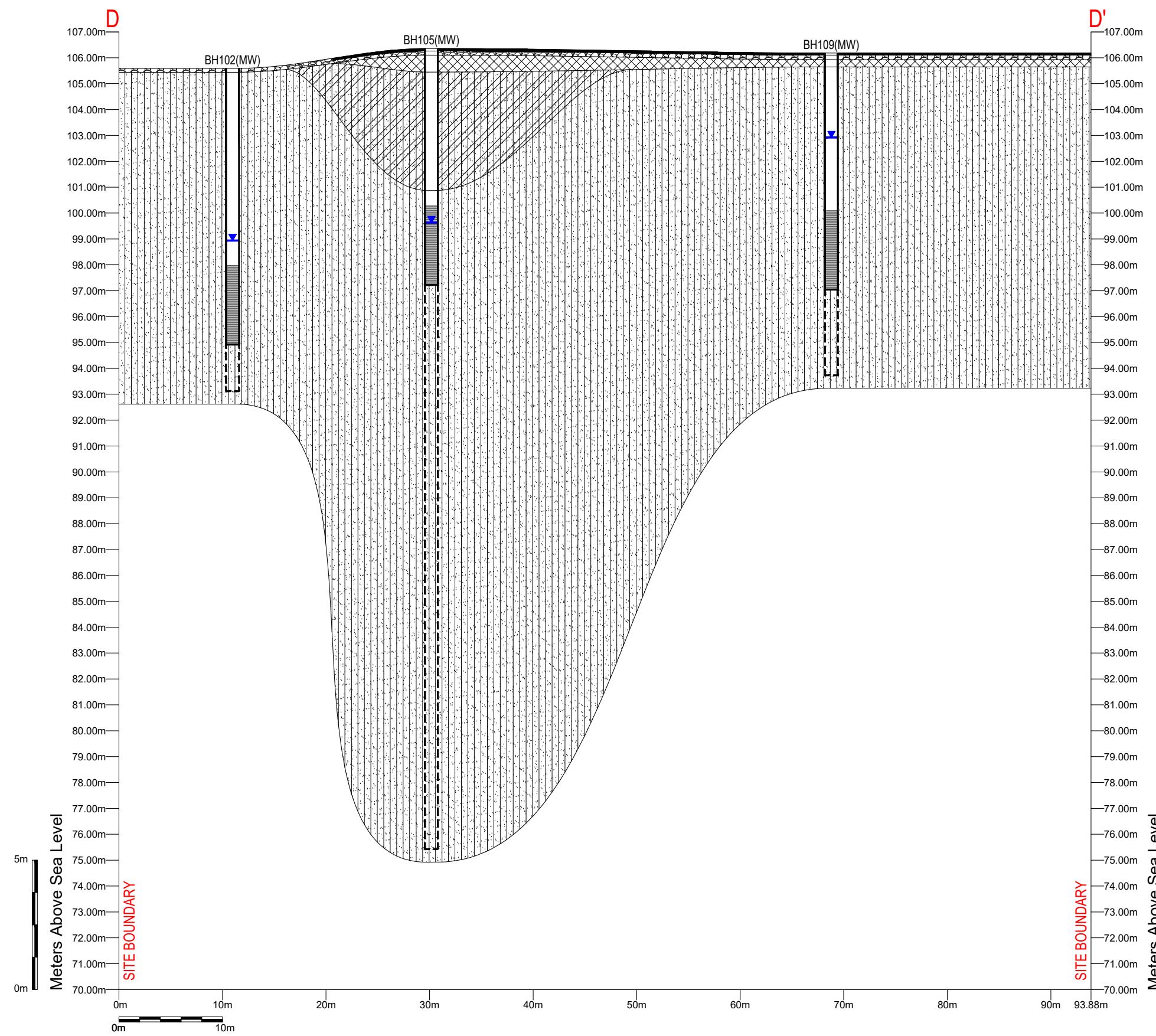
PROJECT NAME AND ADDRESS
**GEOTECHNICAL AND
HYDROGEOLOGICAL
INVESTIGATION**
375-417 Kingston Road,
Pickering, ON


FIGURE A4.3:
CROSS-SECTION C - C'

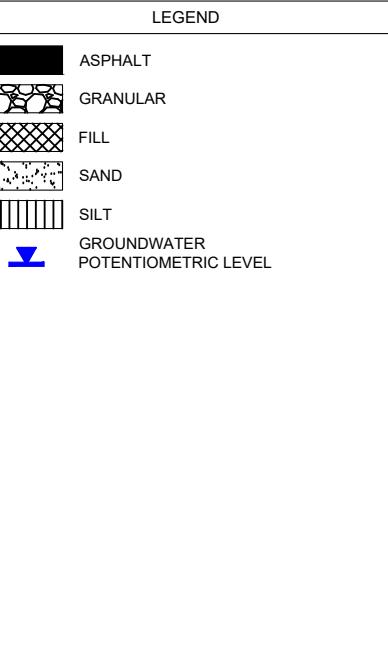
PROJECT NO. FE 24-14410/11	SHEET NO.
DATE 11 February 2025	
SCALE AS SHOWN	

A4.3

NORTH

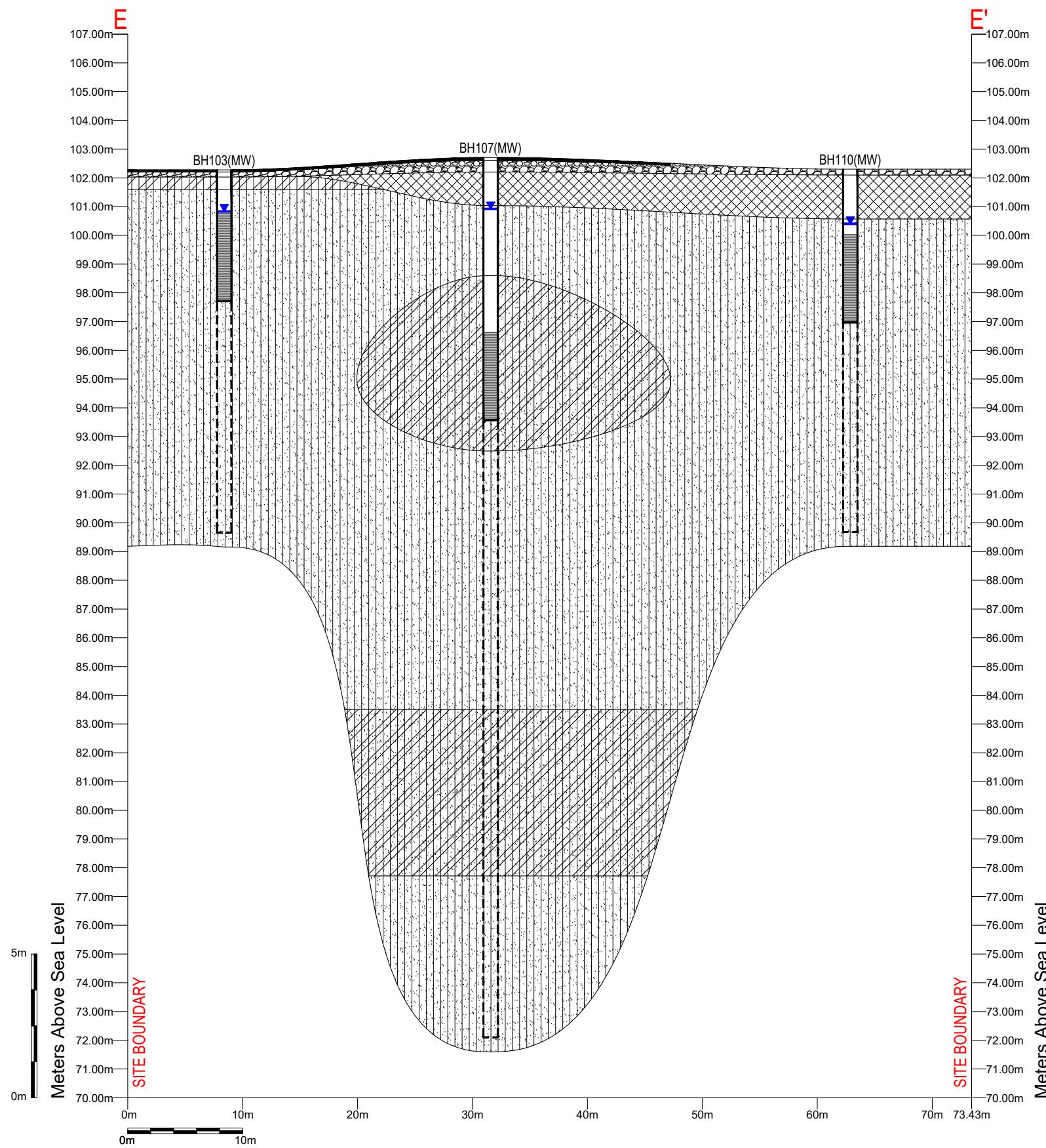


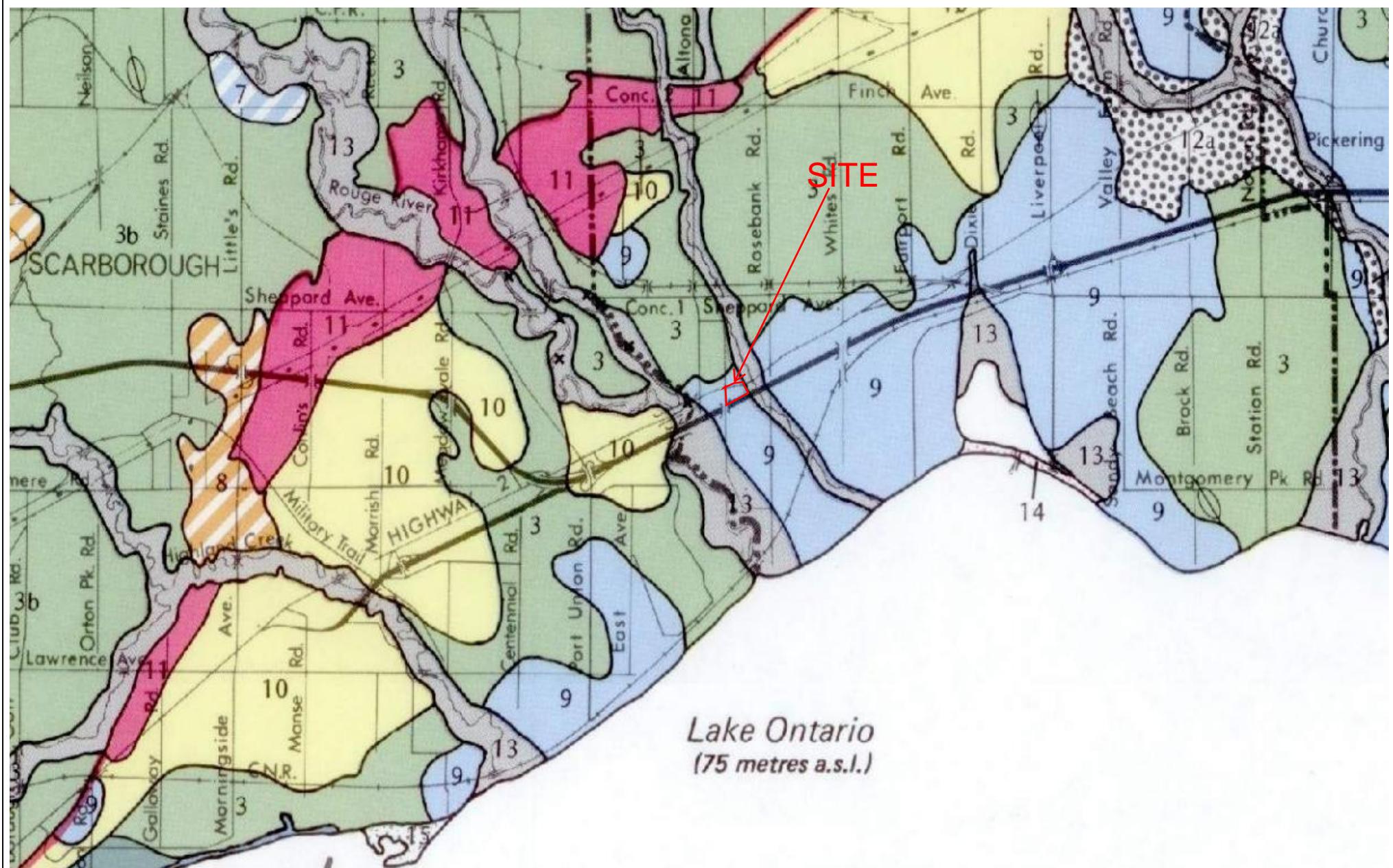
PROJECT NAME AND ADDRESS
**GEOTECHNICAL AND
HYDROGEOLOGICAL
INVESTIGATION**
375-417 Kingston Road,
Pickering, ON


FIGURE A4.4:
CROSS-SECTION D - D'

PROJECT NO.	FE 24-14410/11	SHEET NO.
DATE	11 February 2025	
SCALE	AS SHOWN	

A4.4


NORTH



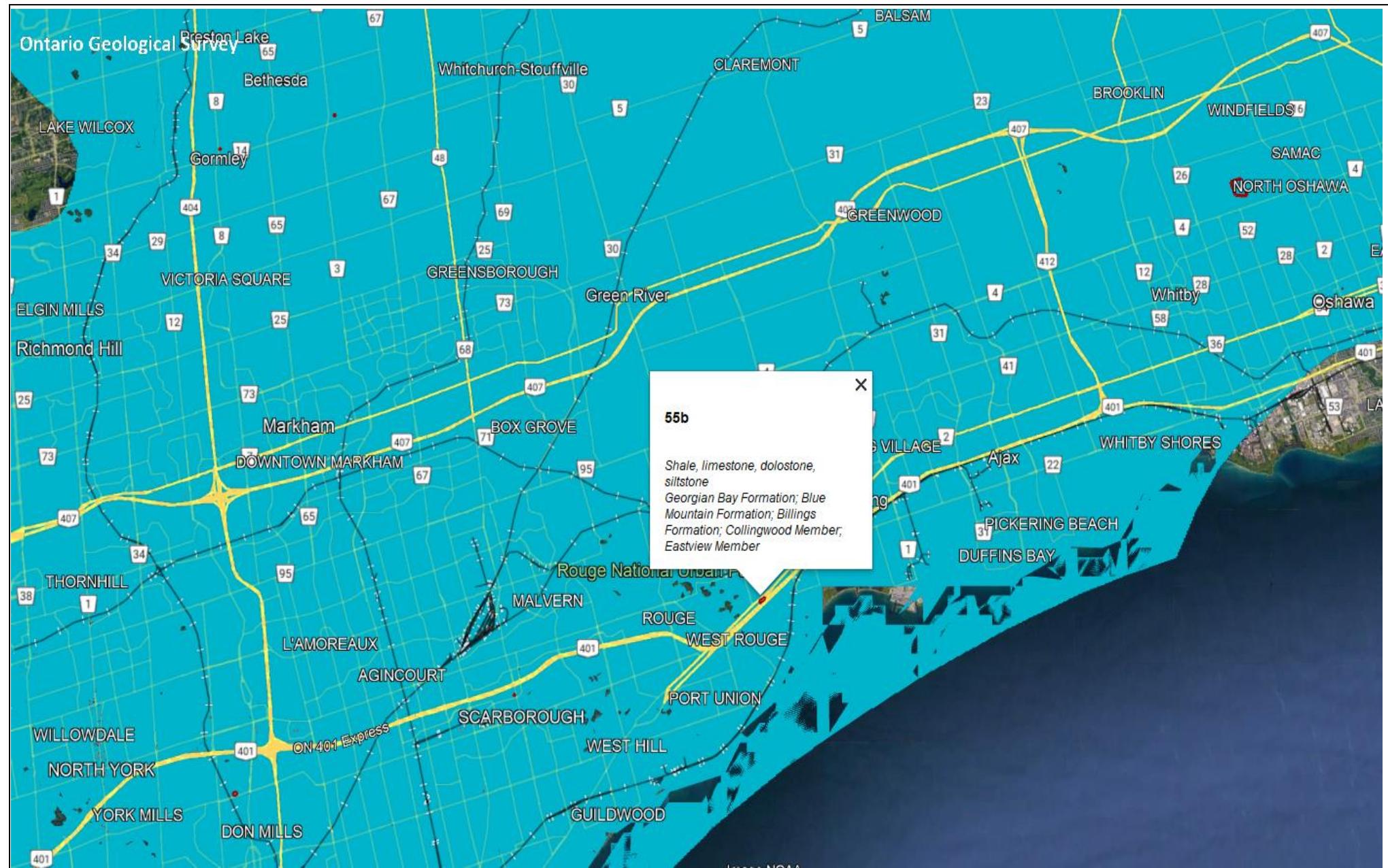

PROJECT NAME AND ADDRESS
GEOTECHNICAL AND HYDROGEOLOGICAL INVESTIGATION
375-417 Kingston Road,
Pickering, ON

FIGURE A4.5:
CROSS-SECTION E - E'

PROJECT NO.	FE 24-14410/11	SHEET NO.
DATE	11 February 2025	
SCALE	AS SHOWN	

A4.5

LEGEND

Shale, Limestone, dolostone, siltstone

Georgian Bay Formation; Blue Mountain Formation; Billings Formation; Collingwood Member & Eastview member.

PROJECT NAME AND ADDRESS

HYDROGEOLOGICAL
INVESTIGATION
375-417 Kingston Road,
PICKERING ON

PROJECT NO.
FH24-14411
DATE
FEBRUARY 2025
SCALE
As shown

FIGURE: A6
Bedrock Geology.

Map created: 2/7/2025

0.3 0 0.17 0.3 Kilometres
This map should not be relied on as a precise indicator of routes or locations, nor as a guide to navigation. The Ontario Ministry of Natural Resources (OMNR) shall not be liable in any way for the use of, or reliance upon, this map or any information on this map.

© Copyright for Ontario Parcel data is held by King's Printer for Ontario and its licensors and may not be reproduced without permission. THIS IS NOT A PLAN OF SURVEY.

Absence of a feature in the map does not mean they do not exist in this area.
Imagery Copyright Notices: DRAPE © Aéro-Photo (1961) Inc., 2008 - 2009
GTA 2005 / SWOOP 2006 / Simcoe-Muskoka-Dufferin © FirstBase Solutions, 2005 / 2006 / 2008
© King's Printer for Ontario, 2025

Legend

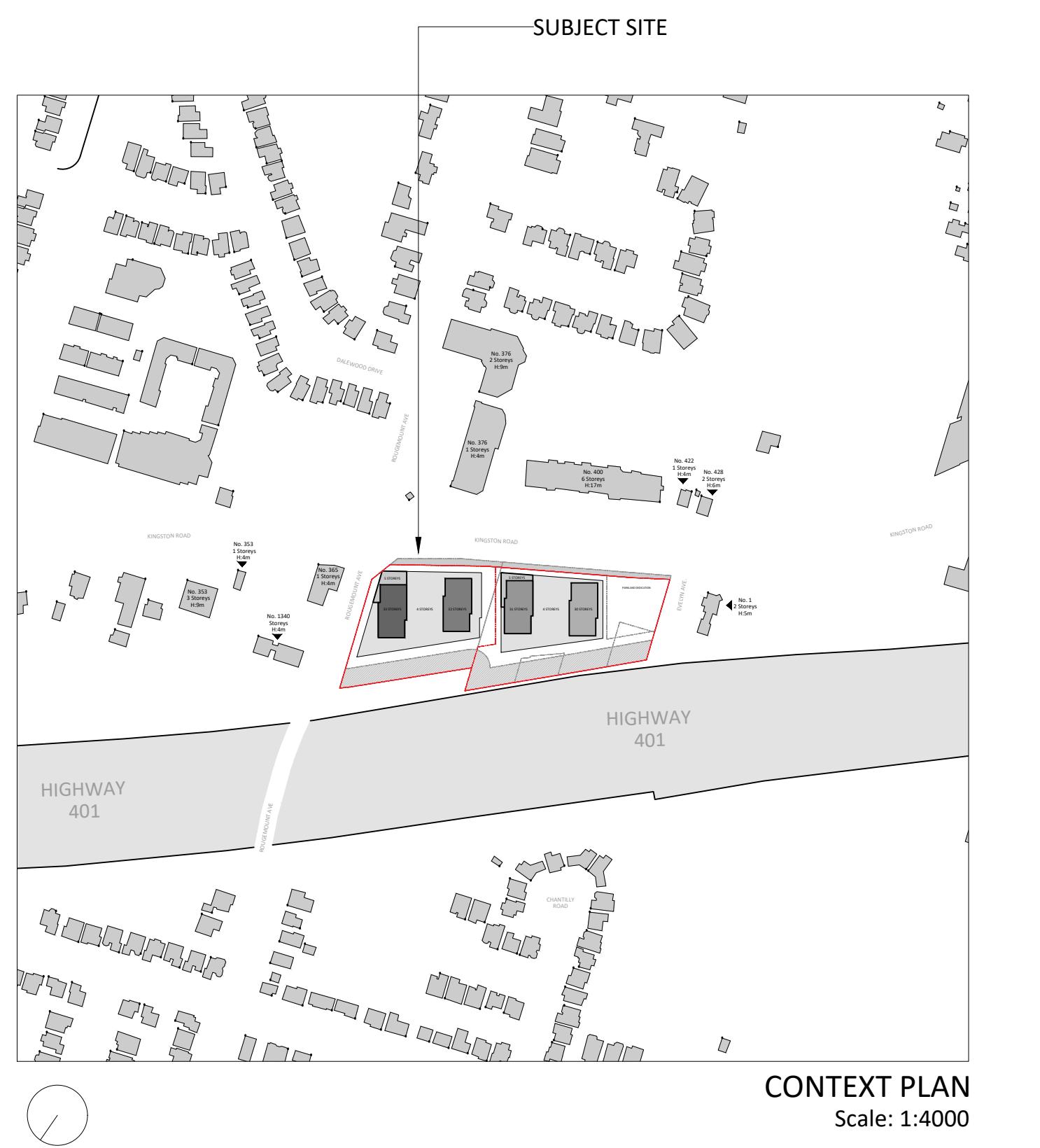
- Assessment Parcel
- ANSI
- Earth Science Provincially Significant/sciences de la terre d'importance provinciale
- Earth Science Regionally Significant/sciences de la terre d'importance régionale
- Life Science Provincially Significant/sciences de la vie d'importance provinciale
- Life Science Regionally Significant/sciences de la vie d'importance régionale
- Conservation Reserve
- Provincial Park
- Natural Heritage System

ZBA XX.XX.24
Description: Date: (mm.dd.yy)

General Notes:
1. These Contract Documents are the property of the Architect. The Architect bears no responsibility for the interpretations of these documents by the Contractor. Upon written request from the Architect, the Architect will provide written/graphic clarification or supplementary information regarding the intent of the Contract Documents. The Architect will not accept drawings submitted by the Contractor for design conformance only.

2. Drawings are not to be scaled for construction. Contractor to verify all existing conditions and dimensions required from the Work and report any discrepancies with the Contract Documents to the Architect before commencing work.

3. Positions of exposed or finished mechanical or electrical devices, fittings, and fixtures are indicated on the Architectural drawings. The locations shown on the Architectural drawings are to be verified on the Mechanical and Electrical drawings. Those items not clearly located will be located as directed by the Architect.


4. Specifications must be read and interpreted with all the construction documents in combination. Drawings, schedules, and any other graphic representation supplement the written text. In the event of conflict between drawings and specifications, the specifications take precedence over the drawings.

PROPOSED RESIDENTIAL DEVELOPMENT

375-409 KINGSTON ROAD, PICKERING, ON L1V 1A3

ARCHITECTURAL DRAWING LIST

- A0.01 PROJECT STATISTICS
- A0.10 AERIAL VIEWS
- A0.11 PERSPECTIVE VIEWS
- A0.12 PERSPECTIVE VIEWS
- A1.00 SITE PLAN
 - A1.01 SITE PLAN - PHASE 1
 - A1.02 GROUND FLOOR & SITE PLAN - PHASE 1
 - A1.04 SITE PLAN - PHASE 1 (PREVIOUS PROPERTY LINE)
 - A1.03 PHASE DIAGRAM - EXISTING BUILDINGS
- A3.00 P2 FLOOR PLAN
- A3.01 P1 FLOOR PLAN
- A3.02 GROUND FLOOR PLAN
- A3.03 2ND-3TH FLOOR PLAN
- A3.04 4TH FLOOR PLAN
- A3.05 5TH-30TH FLOOR PLAN
- A3.06 AMENITY/MECH LEVEL
- A3.07 MECH PH
- A3.08 ROOF PLAN
- A6.00 SECTION A
- A6.01 SECTION B & SECTION C
- A6.01 SECTION D & SECTION E

ISSUED FOR COORDINATION
NOVEMBER 21, 2024

Architects:
STUDIO JCI
20 De Boers Drive, Suite
325
Toronto, ON M3J 0H1
T. (416) 901 6528
www.studiojci.com

PROPOSED MIXED-USE
DEVELOPMENT

375-409 Kingston Rd, Pickering, ON L1V 1A3

COVER

Project No.: 2423
Scale:
Date: November 21, 2024
Drawn by:

Drawing No.:

A0.00

PROJECT SUMMARY - TOTAL

01. SITE AREA		<i>m²</i>	<i>sf</i>
Existing lot area		17,601.9	189,465.3
MTO lands		1,337.7	14,398.9
Net Lot Area		18,067.1	194,472.6
Parkland Dedication (10% of net lot area)		1,806.7	19,447.3
TOTAL LOT AREA		16,260.4	175,025.4

02. GROSS FLOOR AREA		<i>m²</i>	<i>sf</i>
Estimated GFA		93,653.3	1,008,075.7

03. F.S.I		PROPOSED
(including Parkland dedication)		5.18

04. RETAIL		PROPOSED
		<i>m²</i>

Estimated Commercial		3,167.8	34,097.9
----------------------	--	---------	----------

05. LOT COVERAGE		%
(including Parkland dedication)		48.3%
(excluding Parkland dedication)		60.4%

06. RESIDENTIAL UNITS		ESTIMATED
1 Bedroom and 1B+Den		877 67%
2 Bedroom and 1B+Den		440 33%
TOTAL	1317	100%

07. CAR PARKING		ESTIMATED
		REGULAR ACCESSIBLE

P2	317	1
P1	285	2

GF (Loading and Staging)	45	4
Mezzanine	56	7

Floors 2	180	5
Floors 3	184	5

PARKING SPACES		1067 24
RATIO	0.81	

06. BIKE PARKING		ESTIMATED
		LONG-TERM SHORT-TERM

P2	256	0
P1	256	0

GF (Loading and Staging)	0	136
Mezzanine	128	0

L2	44	0
L3	0	0

TOTAL	684	136
--------------	------------	------------

PARKING SPACES WITHIN MTO SETBACK		78
TOTAL RATIO		0.87

08. AMENITY		ESTIMATED
(4.54 m ² x total# of units)	<i>m²</i>	<i>sf</i>

Indoor	2779.4	29,917.2
Outdoor	5383.2	57,944.3

TOTAL	8162.6	87,861.5
--------------	---------------	-----------------

Proposed Amenity Rate per Unit	6.2	66.7
--------------------------------	-----	------

09. BUILDING HEIGHT		ESTIMATED (m)
Building height		107.40

Building height (including mech)		112.40
----------------------------------	--	--------

AREA SUMMARY - TOTAL

LEVEL	ESTIMATED GCA	ESTIMATED GFA	EST. NSA : COMMERCIAL	EST. NSA : RESIDENTIAL	COMMON AREA	PARKING AREA	GFA EXEMPTION	INDOOR AMENITY	STORAGE
-------	---------------	---------------	-----------------------	------------------------	-------------	--------------	---------------	----------------	---------

P2	12,009.5	129,269.2	215.5	2,319.6	0.0	0.0	410.5	4,418.6	10,909.1	117,424.6	11794	126,949.6	0.0	0.0	662.4	7,130.0
P1	12,009.5	129,269.2	215.5	2,319.6	0.0	0.0	930.1	10,011.5	10,909.1	117,424.6	11794	126,949.6	0.0	0.0	387	4,165.6
GROUND FLOOR (LOADING)	5,658.4	60,906.5	4,986.6	53,675.3	3,167.8	34,097.9	0.0	0.0	1,986.1	21,378.2	504.2	5,427.2	671.8	7,231.2	0.0	0.0
MEZZANINE	4,059.3	43,693.9	812.1	8,741.4	0.0	0.0	818.7	8,812.4	3,038.1	32,701.8	3,247.2	34,952.6	0.0	0.0	202.6	2,180.8
FLOOR 2	8,728.3	93,950.6	510.6	5,496.1	0.0	0.0	480.3	5,169.9	7,887.1	84,896.0	8217.7	88,454.6	0.0	0.0	360.9	3,884.7
FLOOR 3	8,728.3	93,950.6	510.6	5,496.1	0.0	0.0	480.3	5,169.9	7,887.1	84,896.0	8217.7	88,454.6	0.0	0.0	360.9	3,884.7
FLOOR 4 (AMENITY)	3,723.9	40,083.7	1,751.9	18,857.3	0.0	0.0	1,413.3	15,212.6	547.6</							

ZBA XX.XX.24
Description: Date: (mm.dd.yy)

General Notes:
1. These Contract Documents are the property of the Architect. The Architect bears no responsibility for the interpretations of these documents by the Contractor. Upon written request from the Architect, the Contractor will provide written/graphic clarification or supplementary information regarding the intent of the Contract Documents. The Architect will review the drawings submitted by the Contractor for design conformance only.

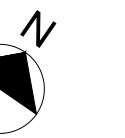
2. Drawings are not to be scaled for construction. Contractor to verify all existing conditions and dimensions required from the Work and report any discrepancies with the Contract Documents to the Architect before commencing work.

3. Positions of exposed or finished mechanical or electrical devices, fittings, and fixtures are indicated on the Architectural drawings. The locations shown on the Architectural drawings are to be verified on the Structural and Electrical drawings. Those items not clearly located will be located as directed by the Architect.

4. Specifications must be read and interpreted with all the construction documents in combination. Drawings, schedules, and any other graphic representation supplement the written text in the event of conflict between documents. Specifications, the specifications take precedence over the drawings.

Architects:
STUDIO JCI
20 De Boers Drive, Suite
325
Toronto, ON M3J 0H1
T. (416) 901 6528
www.studiojci.com

PROPOSED MIXED-USE
DEVELOPMENT


375-409 Kingston Rd, Pickering, ON L1V 1A3

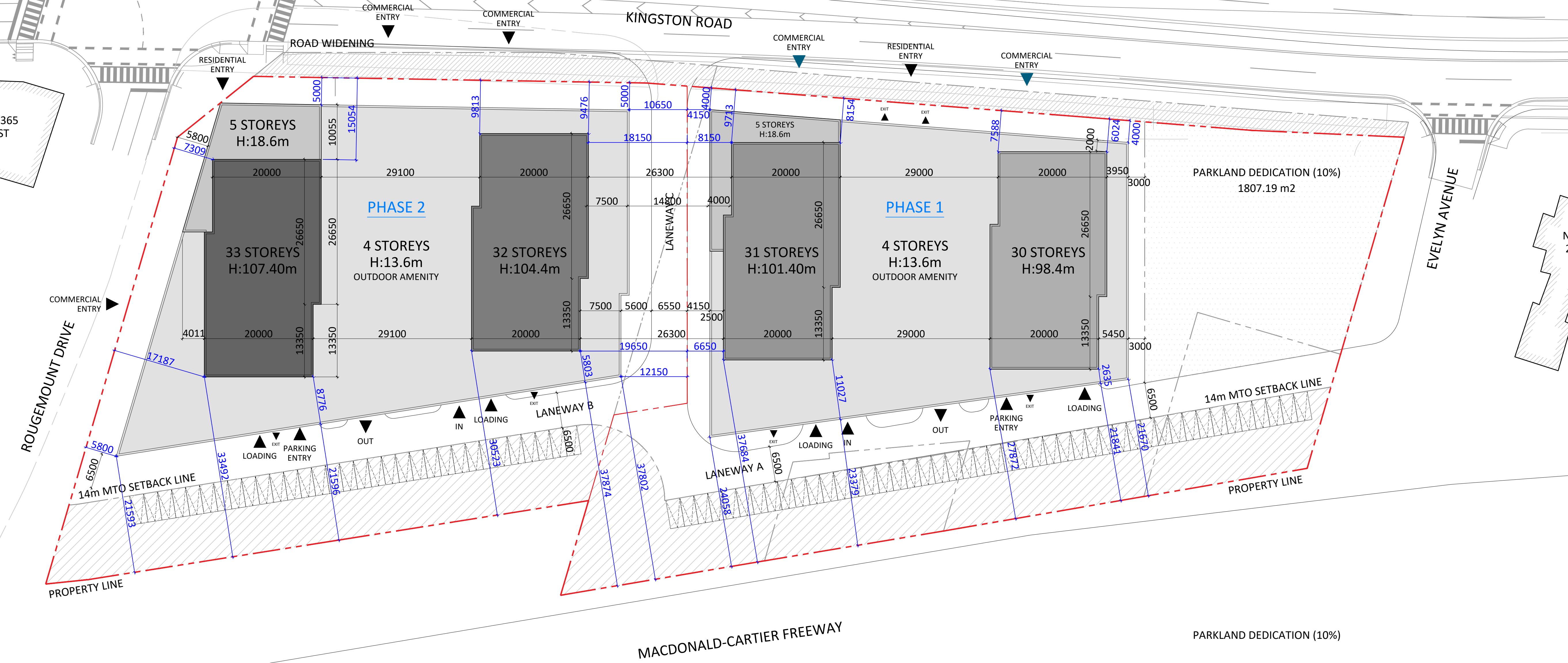
AERIAL VIEWS

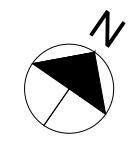
Project No.: 2423
Scale:
Date: November 21, 2024
Drawn by:

Drawing No.:

A0.010

ZBA XX.XX.24
Description: Date: (mm.dd.yy)


General Notes:


1. These Contract Documents are the property of the Architect. The Architect bears no responsibility for the interpretations of these documents by the Contractor. Upon completion of the Work, the Architect will provide written/graphic clarification or supplementary information regarding the meaning of the drawings. The Architect will review the drawings submitted by the Contractor for design conformance only.

2. Drawings are not to be scaled for construction. Contractor to verify all existing conditions and dimensions regarding the Work and report any discrepancies with the Contract Documents to the Architect before commencing work.

3. Positions of exposed or finished mechanical or electrical devices, fittings, and fixtures are indicated on the Architectural drawings. The locations shown on the Architectural drawings are the locations of the Mechanical and Electrical drawings. Those items not clearly located will be located as directed by the Architect.

4. Specifications must be read and interpreted with all the contract documents in combination. Drawings, schedules, and any other graphic representation supplement the written text in the event of conflict between drawings and specifications. The specifications take precedence over the drawings.

Issued

General Notes:

1. These Contract Documents are the property of the Architect. The Architect bears no responsibility for the interpretations of these documents by the Contractor. Upon written application the Architect will provide written/graphic clarification or supplementary information regarding the intent of the Contract Documents. The Architect will review Shop Drawings submitted by the Contractor for design conformance only.

2. Drawings are not to be scaled for construction. Contractor to verify all existing conditions and dimensions required to perform the Work and report any discrepancies with the Contract Documents to the Architect before commencing work.
3. Positions of exposed or finished mechanical or electrical devices, fittings, and fixtures are indicated on the Architectural drawings. The locations shown on the Architectural drawings govern over the Mechanical and Electrical drawings. Those items not clearly located will be located as directed by the Architect.
4. Specifications must be read and interpreted with all the construction documents in combination. Drawings, schedules, and any other graphic representation supplement the written word. In the event of conflict between drawings and specifications, the specifications take precedence over the drawings.

Architects:

STUDIO JCI

DEVELOPMENT

375-409 Kingston Rd, Pickering, ON L1V 1A3

Project No.: 2423
Scale: 1:400
Date: November 21, 2024
Drawn by: _____

Drawing No.:

A3.04

General Notes:

These Contract Documents are the property of the architect. The Architect bears no responsibility for the interpretations of these documents by the Contractor. Upon written application the Architect will provide written/graphic clarification or supplementary information regarding the intent of the Contract Documents. The architect will review Shop Drawings submitted by the contractor for design conformance only.

Drawings are not to be scaled for construction. Contractor to verify all existing conditions and dimensions required to perform the Work and report any discrepancies with the Contract Documents to the Architect before commencing work.

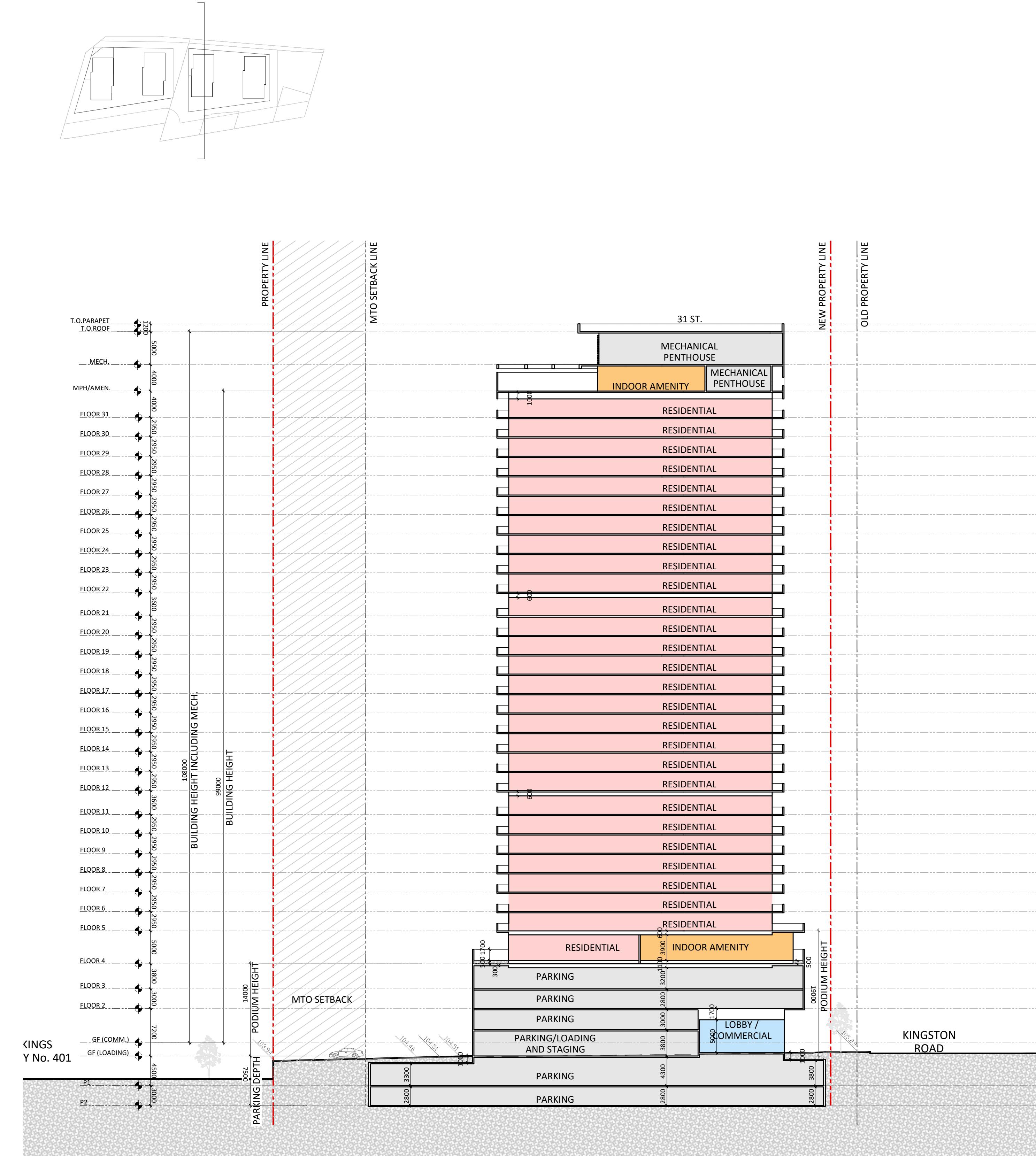
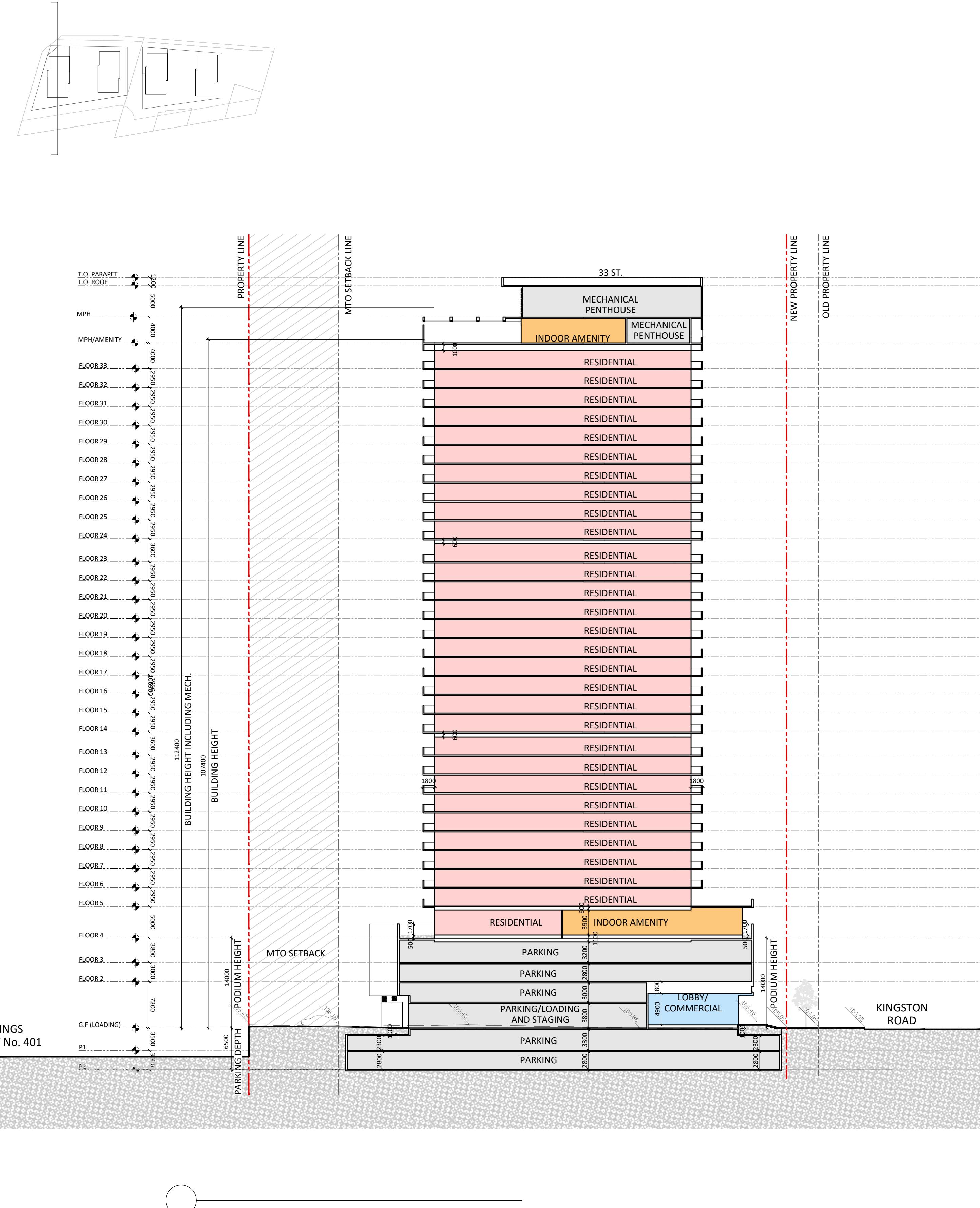
4. Positions of exposed or finished mechanical or electrical devices, fittings, and fixtures are indicated on the architectural drawings. The locations shown on the architectural drawings govern over the Mechanical and Electrical drawings. Those items not clearly located will be

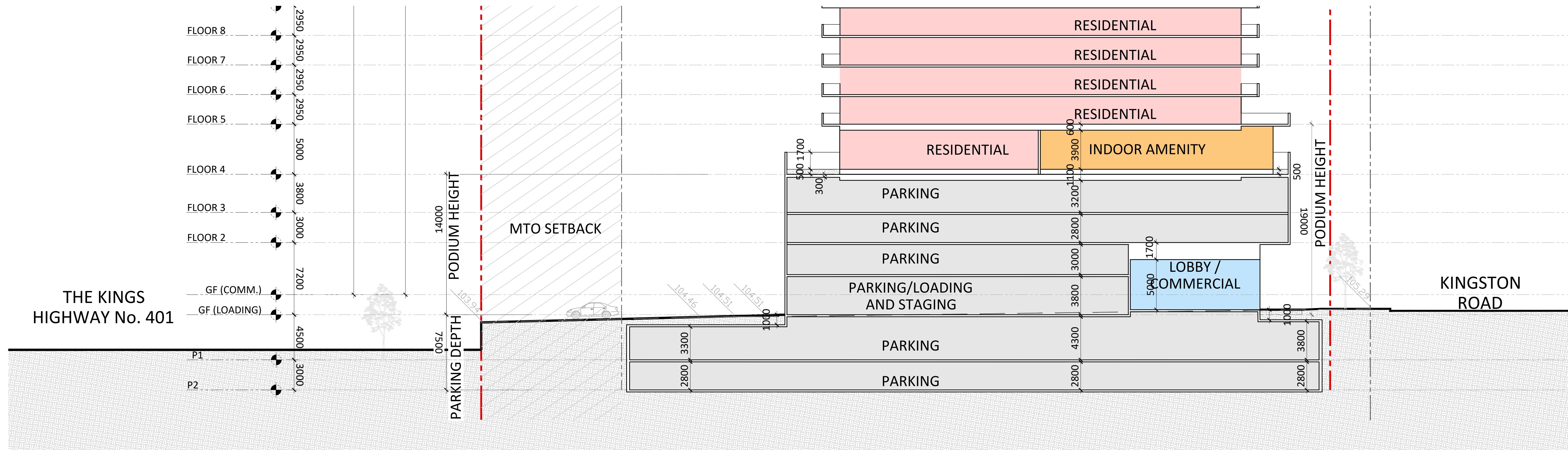
4. Specifications must be read and interpreted with all the construction documents in combination. Drawings, schedules, and any other graphic representation supplement the written word. In the event of conflict between drawings and specifications, the specifications take precedence over the drawings.

Architects:
STUDIO JCI

PROPOSED MIXED-USE DEVELOPMENT

75-409 Kingston Rd, Pickering, ON L1V 1A3



MECH.

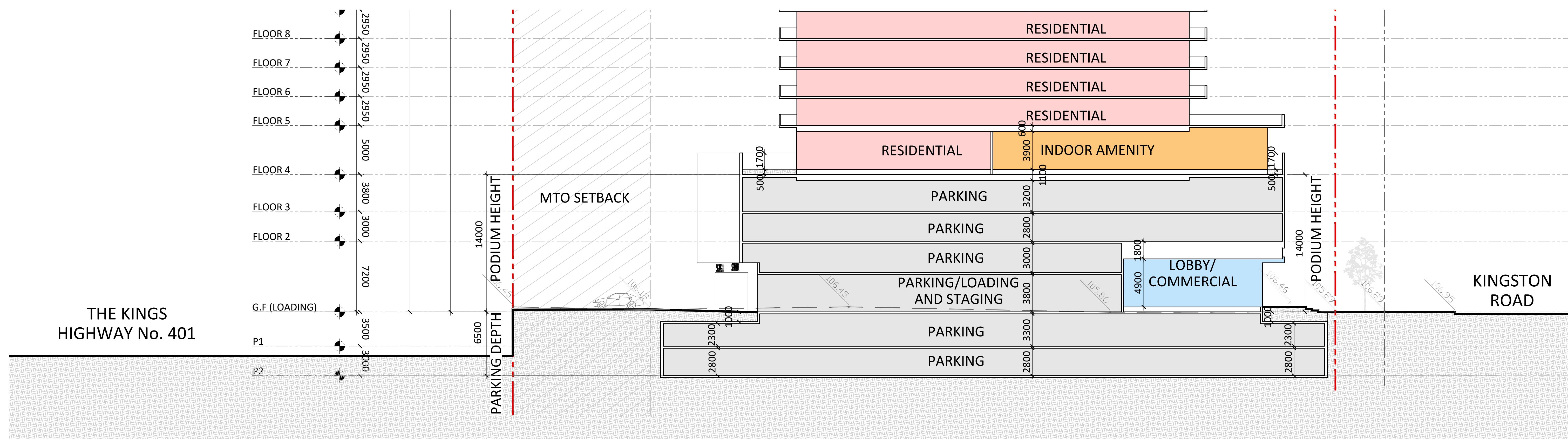

Project No.: 2423
Scale: 1:400
Date: November 21, 2024
Drawn by:

SECTION B-PHASE 1

Issued

ZBA XX-XX-24
Description: Date: (mm.dd.yy)

General Notes:
1. These Contract Documents are the property of the Architect. The Architect bears no responsibility for the interpretations of these documents by the Contractor. Upon request, the Architect will provide written/graphic clarification or supplementary information regarding the intent of the Contract Documents. The Architect's review of the Drawings submitted by the Contractor for design conformance only.


2. Drawings are not to be scaled for construction. Contractor to verify all existing conditions and dimensions required for the Work and report any discrepancies with the Contract Documents to the Architect before commencing work.

3. Positions of exposed or finished mechanical or electrical devices, fittings, and fixtures are indicated on the Architectural drawings. The locations shown on the Architectural drawings are the locations on the Electrical drawings. Those items not clearly located will be located as directed by the Architect.

4. Specifications must be read and interpreted with all the contract documents in combination. Drawings, schedules, and any other graphic representation supplement the written text in the event of conflict between drawings and specifications. The specifications take precedence over the drawings.

Project No.: 2423
Scale: 1:200
Date: November 21, 2024
Drawn by:

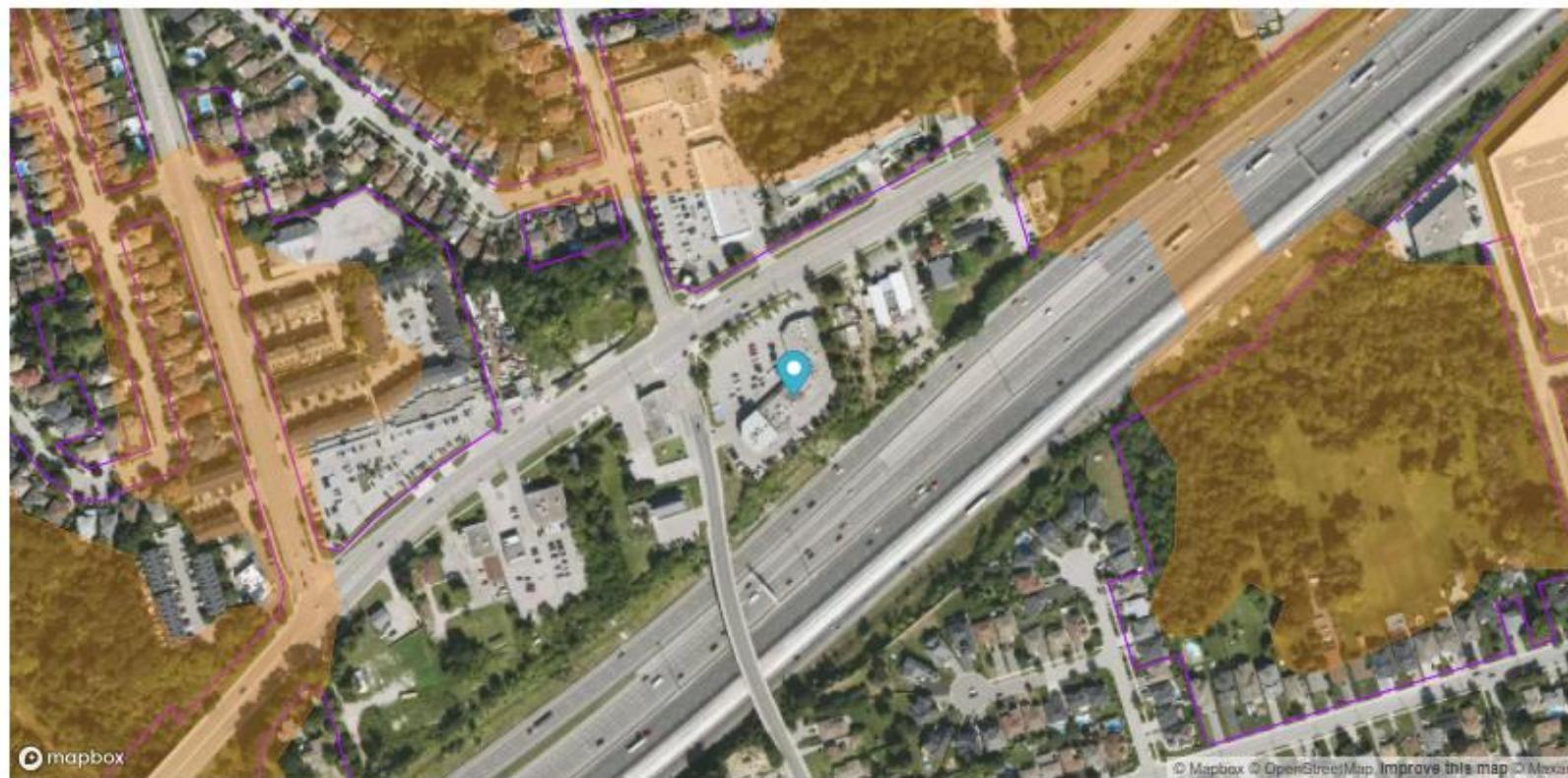
Drawing No.: A6.02

Architects:
STUDIO JCI
20 De Boers Drive, Suite
325
Toronto, ON M3J 0H1
T. (416) 901 6528
www.studiojci.com

PROPOSED MIXED-USE
DEVELOPMENT

375-409 Kingston Rd, Pickering, ON L1V 1A3

SECTION D & E


Project No.: 2423
Scale: 1:200
Date: November 21, 2024
Drawn by:

Drawing No.: A6.02

375 Kingston Road, Pickering, Ontario L1V 1A3, Canada

I agree that I have read and understood the Terms and Conditions

That address is within TRCA's jurisdiction, but does not appear to be within a TRCA Regulated Area. If you have further questions please contact us.

Map Layers

TRCA Conceptual Regulated Area

Parcel Boundary

PLAN OF TOPOGRAPHIC DETAIL OF
375 KINGSTON ROAD, PICKERING, ON
REGIONAL MUNICIPALITY OF DURHAM

SCALE 1:250
0 5 10 15 METRES
DOMEAN FLEISCHMANN PETRICH LTD., 2021

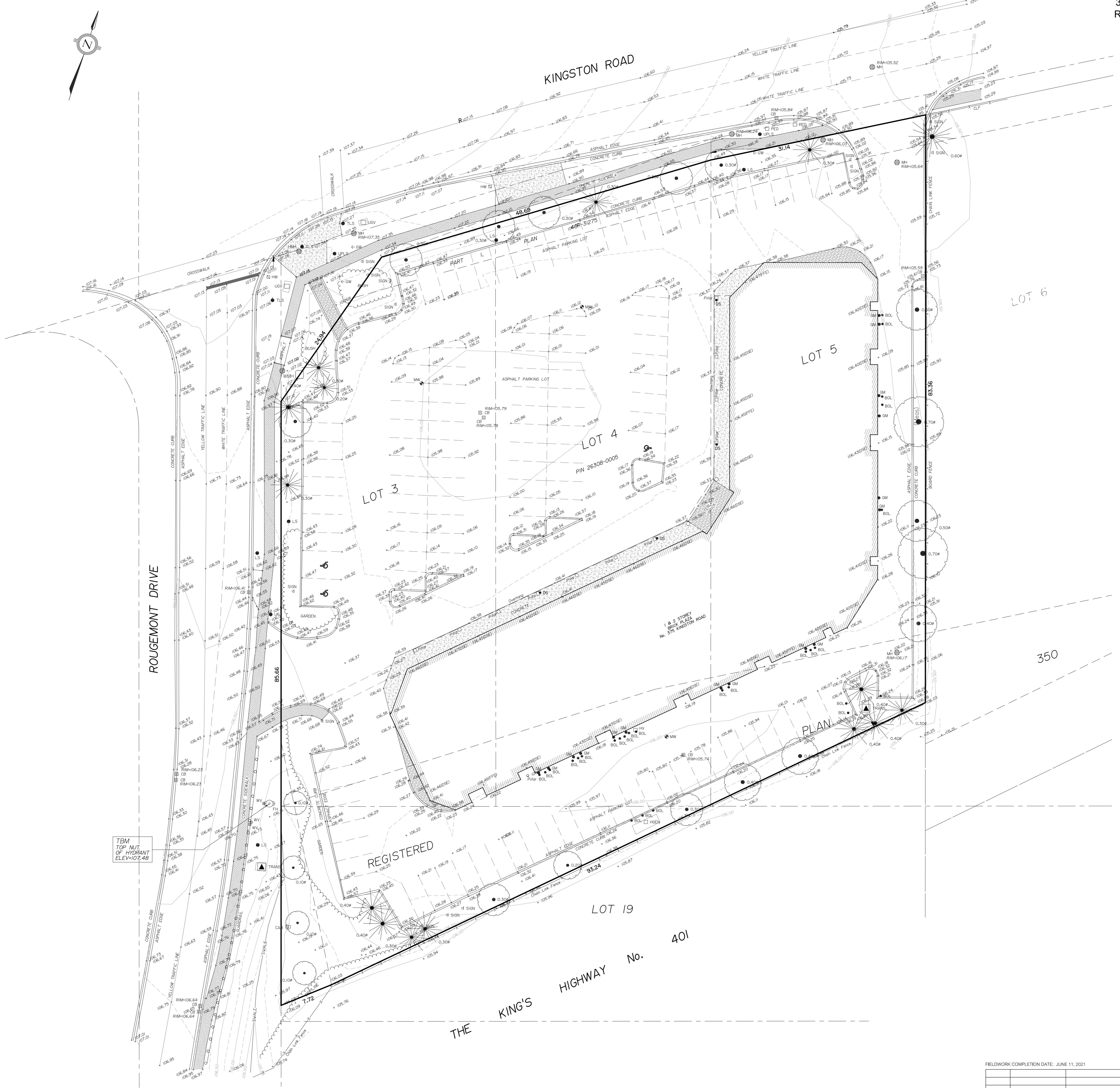
METRIC

DISTANCES AND COORDINATES SHOWN ON THIS PLAN ARE IN METRES
AND CAN BE CONVERTED TO FEET BY DIVIDING BY 0.3048.

"CAUTION"

THIS IS NOT A PLAN OF SURVEY AND SHALL NOT BE USED EXCEPT FOR
THE PURPOSE INDICATED IN THE TITLE BLOCK. THIS SKETCH IS
PROTECTED BY COPYRIGHT. BOUNDARY INFORMATION SHOWN
HEREIN IS COMPILED FROM AVAILABLE SOURCES. CONTRACTOR TO
VERIFY ALL UNDERGROUND SERVICES PRIOR TO EXCAVATION.

ELEVATION NOTE


ELEVATIONS ARE GEODETIC, DERIVED BY RTK GPS OBSERVATIONS
USING THE TOPNET REAL-TIME NETWORK SERVICE AND REFERRED TO
CGVD28-1978 USING THE NRCan HTV2.0 GEOD SEPARATION MODEL.

TEMPORARY BENCHMARK (TBM)

TOP NUT OF HYDRANT, AS SHOWN ON PLAN, HAVING AN ELEVATION
OF 107.48

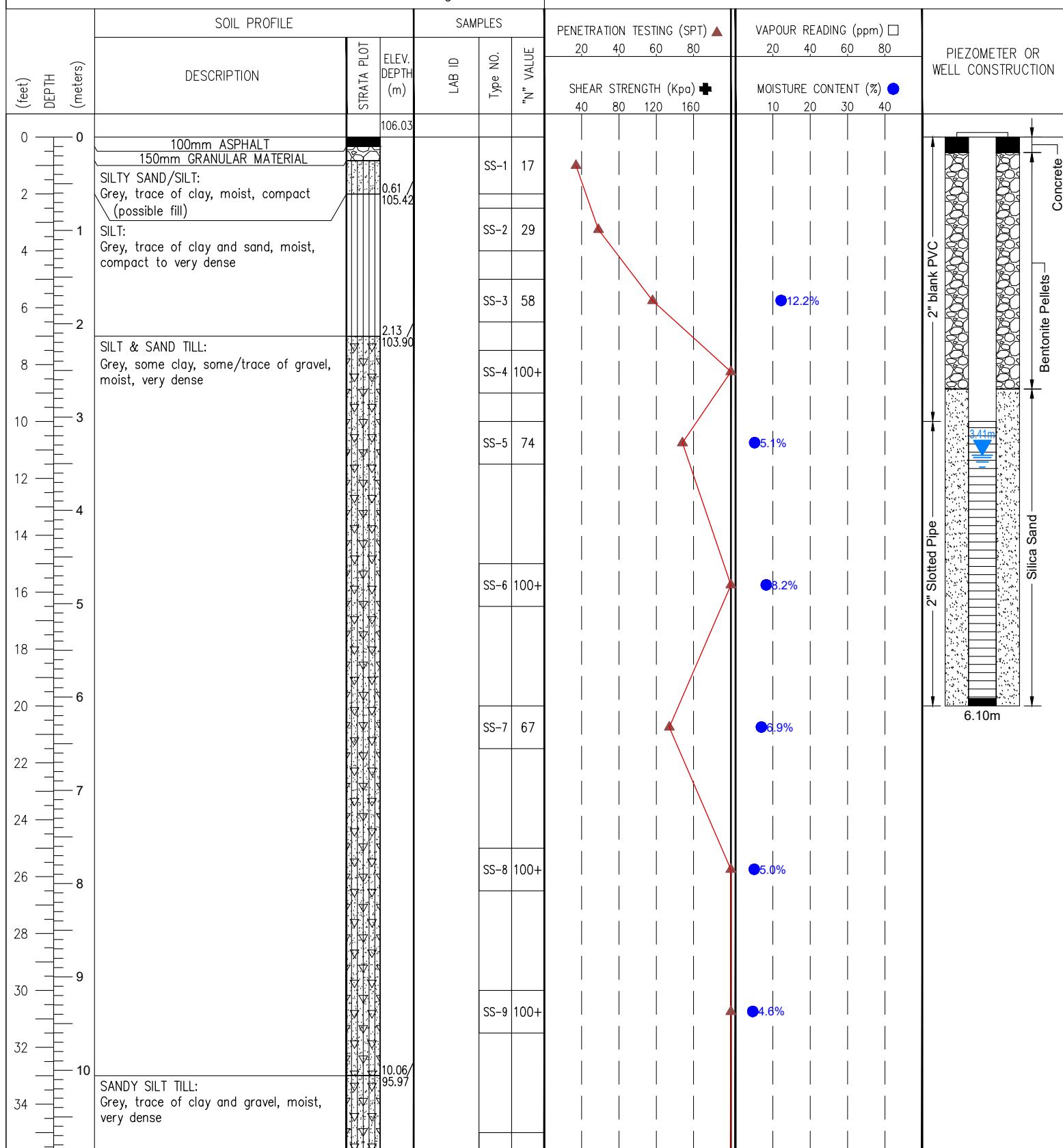
LEGEND

REF. DENOTES COMMUNICATIONS PEDESTAL
CAB. DENOTES COMMUNICATIONS CABINET
UGV. DENOTES UNDERGROUND VAULT
HW. DENOTES HANDWELL
CB. DENOTES CATCHBASIN
HMH. DENOTES HYDRO MANHOLE
PT. DENOTES PLATE HYDRANT
GN. DENOTES GUY NUT
MH. DENOTES MANHOLE
UP. DENOTES UTILITY POLE
LS. DENOTES LIGHT STANDARD
TL. DENOTES TRAFFIC LIGHT
TLS. DENOTES TRAFFIC LIGHT STANDARD
WV. DENOTES WATER VALVE
MW. DENOTES MONITORING WELL
GM. DENOTES GAS METER
DS. DENOTES DRAIN SPOUT
BOL. DENOTES BOLSTERS
FFE. DENOTES FINISHED FLOOR ELEVATION
DSE. DENOTES DOOR SILL ELEVATION
BH. DENOTES BOREHOLE
CLF. DENOTES CABLE LINING FENCE
HGEN. DENOTES HYDRO GENERATOR
HV. DENOTES HYDRO VAULT

APPENDIX B – LOG OF BOREHOLES

F i s h e r E n g i n e e r i n g L i m i t e d

Project No. FH24-14411_V2 March 7, 2025


PROJECT NO.: FE 24-14410/11

PROJECT NAME: GEOTECHNICAL AND HYDROGEOLOGICAL INVESTIGATIONS

LOCATION: 375-417 Kingston Road, Pickering, ON

DRILLING METHOD: D-50 Truck, Solid Stem Auger

DRILLING DATE: 17 December, 2024

Groundwater Depth (m): on completion: Dry; on 22 January, 2025: 3.41m

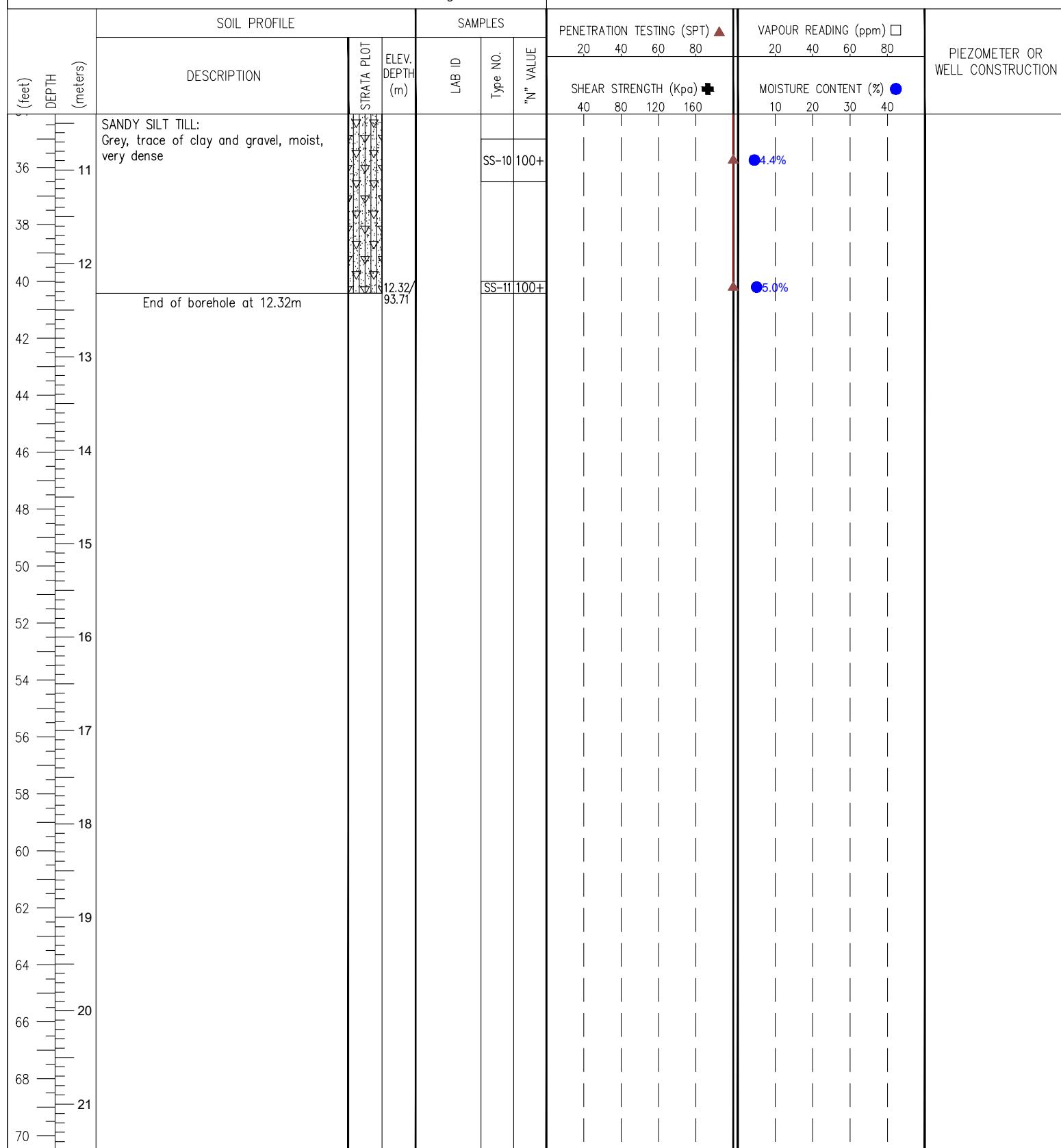
DRAWN: T.L.

LOGGED: D.G.

CHECKED: C.W.

LOG OF BOREHOLE

NO. BH101(MW) SHEET. 2 of 2


PROJECT NO.: FE 24-14410/11

PROJECT NAME: GEOTECHNICAL AND HYDROGEOLOGICAL INVESTIGATIONS

LOCATION: 375-417 Kingston Road, Pickering, ON

DRILLING METHOD: D-50 Truck, Solid Stem Auger

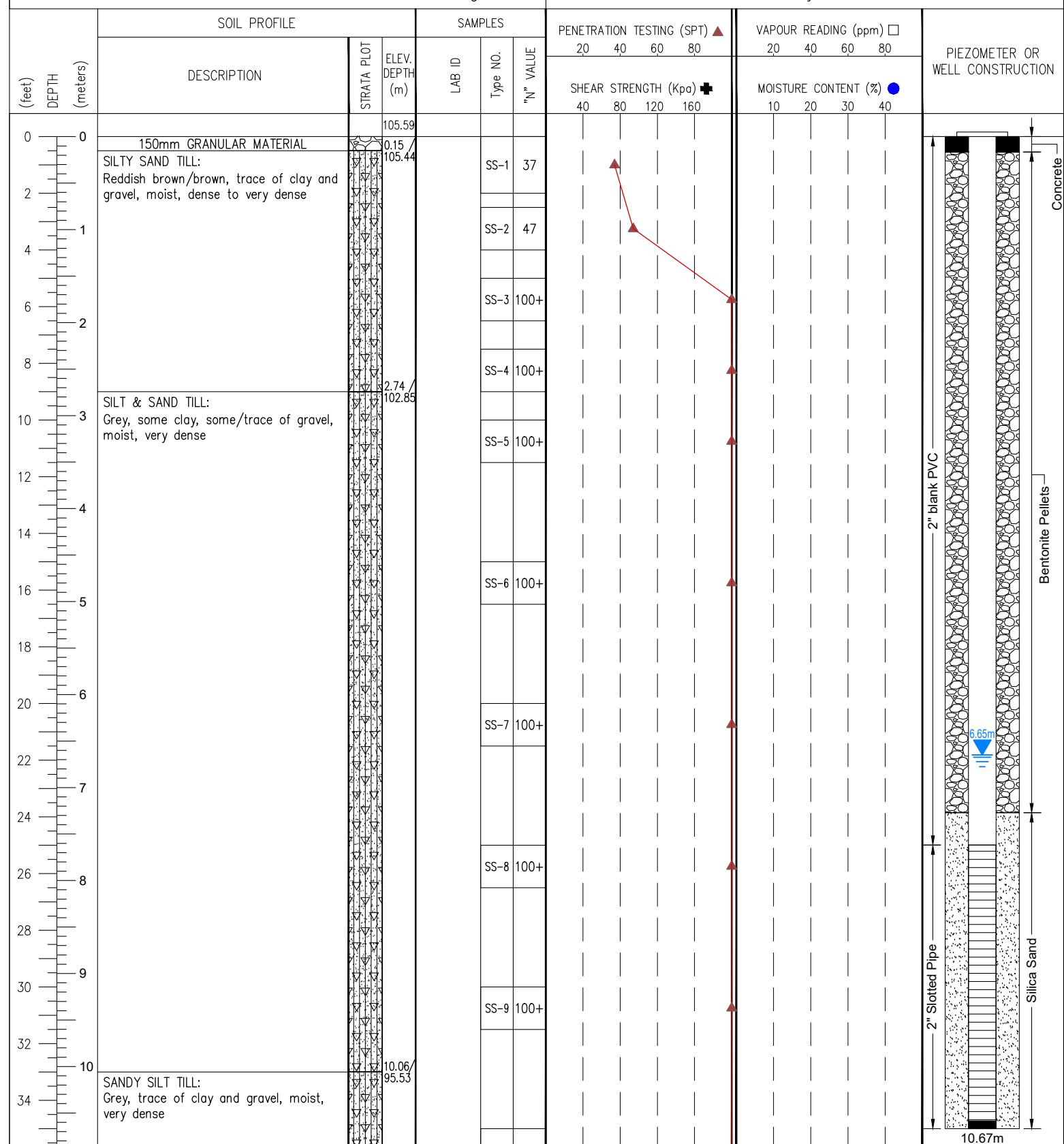
DRILLING DATE: 17 December, 2024

Groundwater Depth (m): on completion: Dry, on 22 January, 2025: 3.41m

DRAWN: T.L.

LOGGED: D.G.

CHECKED: C.W.


PROJECT NO.: FE 24-14410/11

PROJECT NAME: GEOTECHNICAL AND HYDROGEOLOGICAL INVESTIGATIONS

LOCATION: 375-417 Kingston Road, Pickering, ON

DRILLING METHOD: CME-75 Truck, Solid Stem Auger

DRILLING DATE: 6 January, 2025

Groundwater Depth (m): on completion: 7.62m; on 22 January, 2025: 6.65m

DRAWN: T.L.

LOGGED: D.G.

CHECKED: C.W.

LOG OF BOREHOLE

NO. BH102(MW) SHEET. 2 of 2

PROJECT NO.: FE 24-14410/11

PROJECT NAME: GEOTECHNICAL AND HYDROGEOLOGICAL INVESTIGATIONS

LOCATION: 375-417 Kingston Road, Pickering, ON

DRILLING METHOD: CME-75 Truck, Solid Stem Auger

DRILLING DATE: 6 January, 2025

(feet) DEPTH (meters)	SOIL PROFILE		SAMPLES			PENETRATION TESTING (SPT) ▲ 20 40 60 80	VAPOUR READING (ppm) □ 20 40 60 80	PIEZOMETER OR WELL CONSTRUCTION	
	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	LAB ID	Type NO. "N" VALUE				
					SHEAR STRENGTH (Kpa) ■ 40 80 120 160			MOISTURE CONTENT (%) ● 10 20 30 40	
36	SANDY SILT TILL: Grey, trace of clay and gravel, moist, very dense			SS-10	100+				
38				SS-11	100+				
40									
42	End of borehole at 12.47m		12.47 / 93.12						
44									
46									
48									
50									
52									
54									
56									
58									
60									
62									
64									
66									
68									
70									

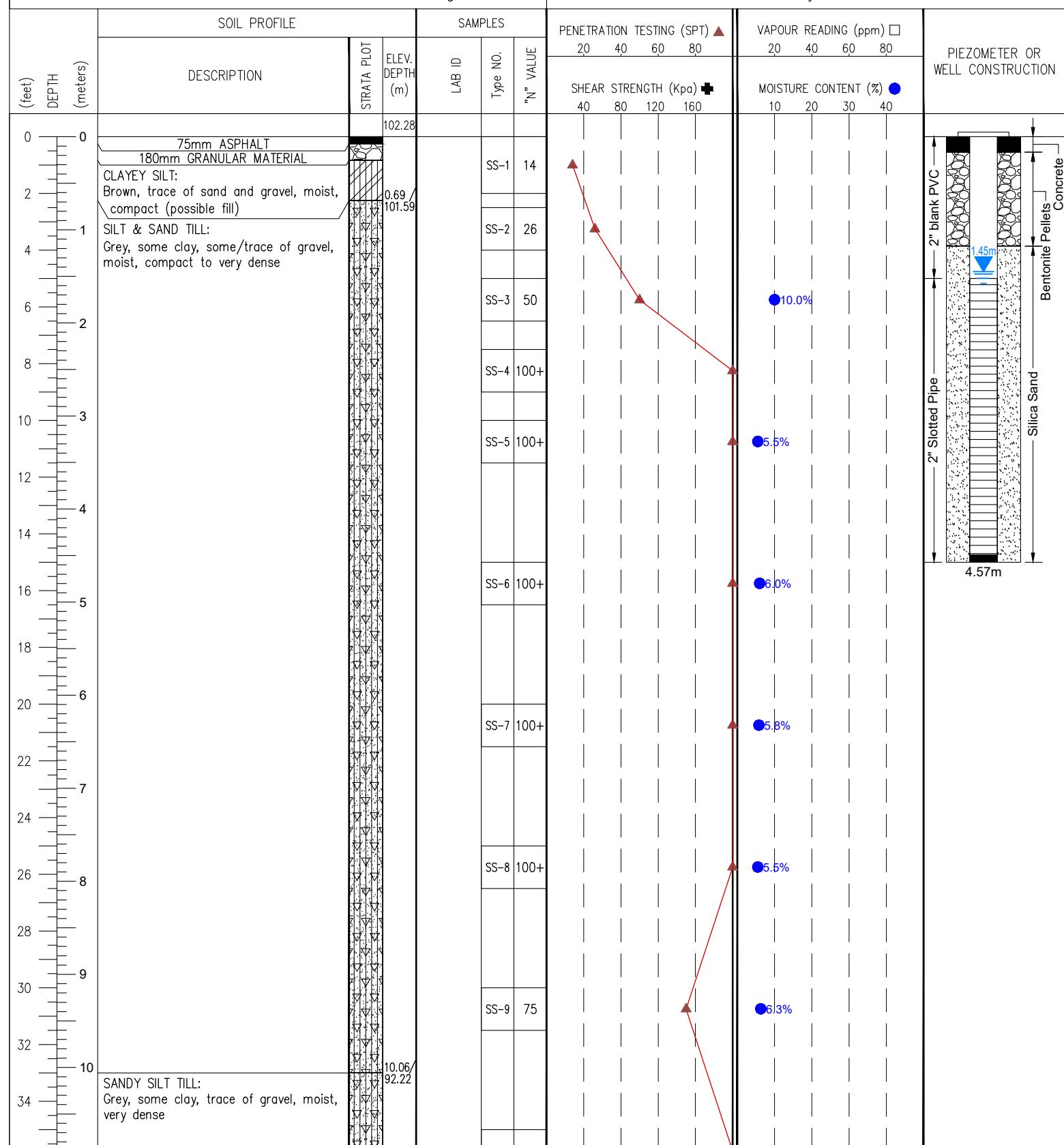
Groundwater Depth (m): on completion: 7.62m; on 22 January, 2025: 6.65m

DRAWN: T.L.

LOGGED: D.G.

CHECKED: C.W.

10.67m


PROJECT NO.: FE 24-14410/11

PROJECT NAME: GEOTECHNICAL AND HYDROGEOLOGICAL INVESTIGATIONS

LOCATION: 375-417 Kingston Road, Pickering, ON

DRILLING METHOD: D-50 Truck, Solid Stem Auger

DRILLING DATE: 6 January, 2025

Groundwater Depth (m): on completion: Dry; on 22 January, 2025: 1.45m

DRAWN: T.L.

LOGGED: D.G.

CHECKED: C.W.

LOG OF BOREHOLE

NO. BH103(MW) SHEET. 2 of 2

PROJECT NO.: FE 24-14410/11

PROJECT NAME: GEOTECHNICAL AND HYDROGEOLOGICAL INVESTIGATIONS

LOCATION: 375-417 Kingston Road, Pickering, ON

DRILLING METHOD: D-50 Truck, Solid Stem Auger

DRILLING DATE: 6 January, 2025

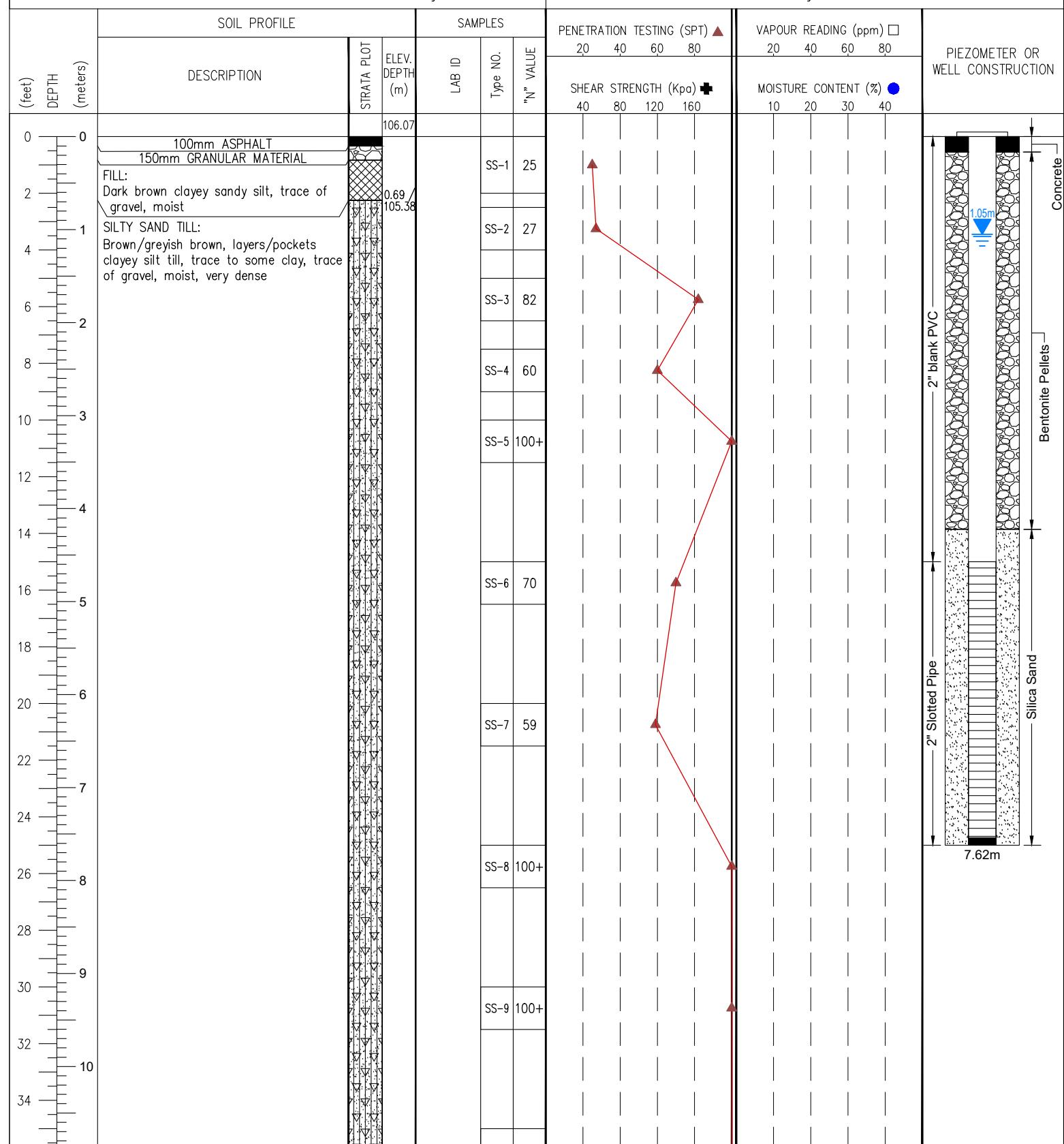
(feet) DEPTH (meters)	SOIL PROFILE		SAMPLES			PIEZOMETER OR WELL CONSTRUCTION	
	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	LAB ID	Type NO.		
					"N" VALUE		
					PENETRATION TESTING (SPT) ▲	VAPOUR READING (ppm) □	
					20 40 60 80	20 40 60 80	
					40 80 120 160	MOISTURE CONTENT (%) ●	
						10 20 30 40	
36	SANDY SILT TILL: Grey, some clay, trace of gravel, moist, very dense			SS-10	100+		6.6%
38							
40				SS-11	100+		7.9%
42	End of borehole at 12.62m		12.62 89.66				
44							
46							
48							
50							
52							
54							
56							
58							
60							
62							
64							
66							
68							
70							

Groundwater Depth (m): on completion: Dry, on 22 January, 2025: 1.45m

DRAWN: T.L.

LOGGED: D.G.

CHECKED: C.W.


PROJECT NO.: FE 24-14410/11

PROJECT NAME: GEOTECHNICAL AND HYDROGEOLOGICAL INVESTIGATIONS

LOCATION: 375-417 Kingston Road, Pickering, ON

DRILLING METHOD: CME-75 Truck, Mud Rotary

DRILLING DATE: 7 January, 2025

Groundwater Depth (m): on completion: N/A - Mud Rotary, on 22 January, 2025: 1.05m

DRAWN: T.L.

LOGGED: D.G.

CHECKED: C.W.

LOG OF BOREHOLE

NO. BH104(MW) SHEET. 2 of 2

PROJECT NO.: FE 24-14410/11

PROJECT NAME: GEOTECHNICAL AND HYDROGEOLOGICAL INVESTIGATIONS

LOCATION: 375-417 Kingston Road, Pickering, ON

DRILLING METHOD: CME-75 Truck, Mud Rotary

DRILLING DATE: 7 January, 2025

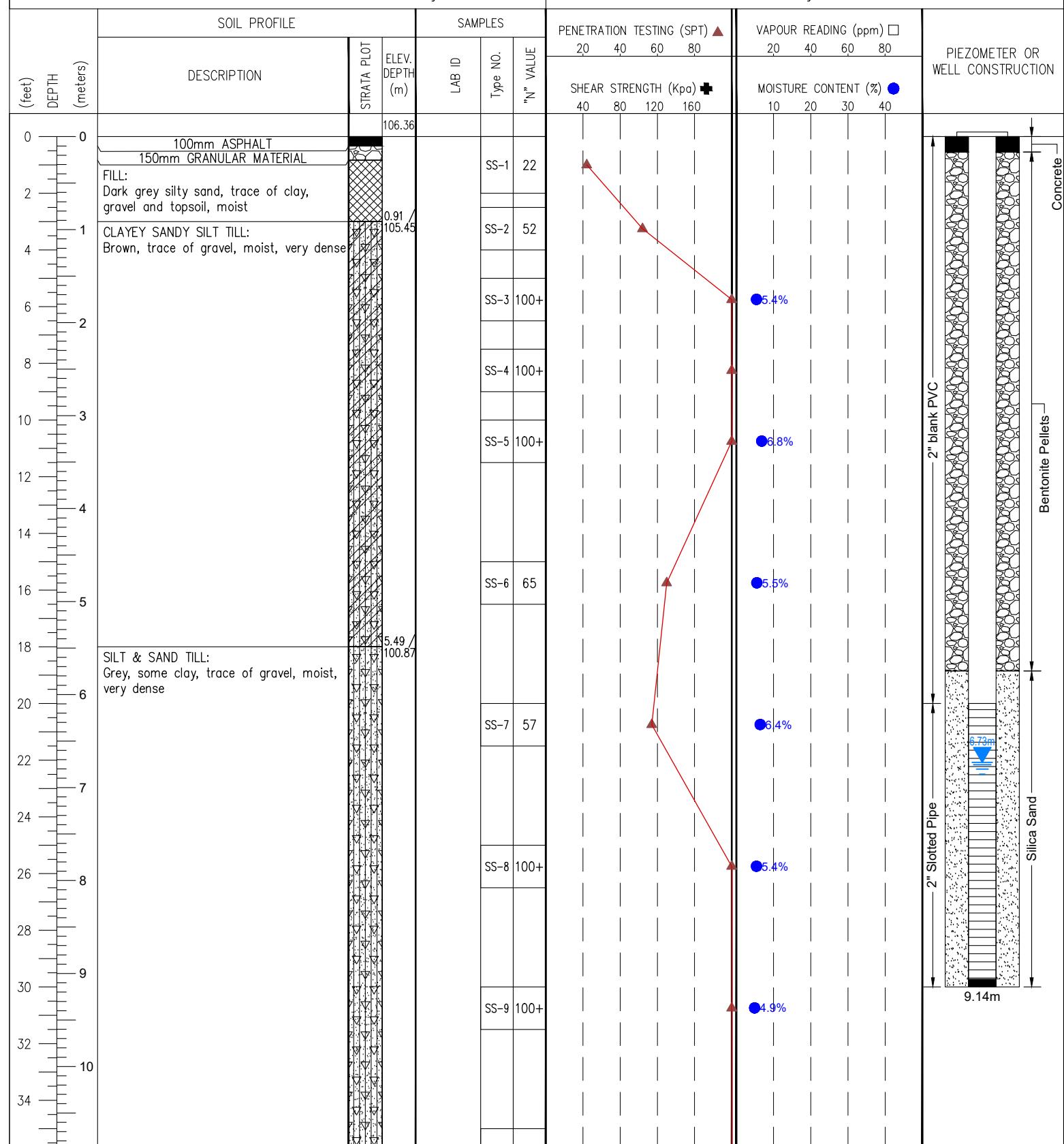
(feet) DEPTH (meters)	SOIL PROFILE		SAMPLES			PIEZOMETER OR WELL CONSTRUCTION	
	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	LAB ID	Type NO.		
					"N" VALUE		
					PENETRATION TESTING (SPT) ▲	VAPOUR READING (ppm) □	
					20 40 60 80	20 40 60 80	
					40 80 120 160	Shear Strength (Kpa) ■	MOISTURE CONTENT (%) ●
						40 80 120 160	10 20 30 40
36	SILTY SAND TILL: Brown/greyish brown, layers/pockets clayey silt till, trace to some clay, trace of gravel, moist, very dense			SS-10	100+		
38				SS-11	100+		
40				SS-12	100+		
42				SS-13	100+		
44				SS-14	100+		
46				SS-15	100+		
48				SS-16	100+		
50							
52							
54	SANDY SILT TILL: Grey, trace of clay and gravel, moist, very dense	16.15/ 89.92					
56							
58							
60							
62							
64							
66							
68							
70	End of borehole at 20.10m	20.10/ 85.97					

Groundwater Depth (m): on completion: N/A - Mud Rotary, on 22 January, 2025: 1.05m

DRAWN: T.L.

LOGGED: D.G.

CHECKED: C.W.


PROJECT NO.: FE 24-14410/11

PROJECT NAME: GEOTECHNICAL AND HYDROGEOLOGICAL INVESTIGATIONS

LOCATION: 375-417 Kingston Road, Pickering, ON

DRILLING METHOD: CME-75 Truck, Mud Rotary

DRILLING DATE: 5 January, 2025

Groundwater Depth (m): on completion: N/A - Mud Rotary, on 22 January, 2025: 6.73m

DRAWN: T.L.

LOGGED: D.G.

CHECKED: C.W.

LOG OF BOREHOLE

NO. BH105(MW) SHEET. 2 of 3

PROJECT NO.: FE 24-14410/11

PROJECT NAME: GEOTECHNICAL AND HYDROGEOLOGICAL INVESTIGATIONS

LOCATION: 375-417 Kingston Road, Pickering, ON

DRILLING METHOD: CME-75 Truck, Mud Rotary

DRILLING DATE: 5 January, 2025

(feet) DEPTH (meters)	SOIL PROFILE		SAMPLES			PENETRATION TESTING (SPT) ▲ 20 40 60 80	VAPOUR READING (ppm) □ 20 40 60 80	PIEZOMETER OR WELL CONSTRUCTION	
	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	LAB ID	Type NO. "N" VALUE				
					SHEAR STRENGTH (Kpa) ■ 40 80 120 160			MOISTURE CONTENT (%) ● 10 20 30 40	
36	SILT & SAND TILL: Grey, some clay, trace of gravel, moist, very dense			SS-10	100+				
38				SS-11	100+				
40				SS-12	100+				
42				SS-13	100+				
44	SANDY SILT TILL: Grey, some clay, trace of gravel, moist, very dense		13.11 / 93.25	SS-14	100+				
46				SS-15	100+				
48				SS-16	100+				
50									
52									
54									
56									
58									
60									
62									
64									
66									
68									
70									

Groundwater Depth (m): on completion: N/A - Mud Rotary, on 22 January, 2025: 6.73m

DRAWN: T.L.

LOGGED: D.G.

CHECKED: C.W.

LOG OF BOREHOLE

NO. BH105(MW) SHEET. 3 of 3

PROJECT NO.: FE 24-14410/11

PROJECT NAME: GEOTECHNICAL AND HYDROGEOLOGICAL INVESTIGATIONS

LOCATION: 375-417 Kingston Road, Pickering, ON

DRILLING METHOD: CME-75 Truck, Mud Rotary

DRILLING DATE: 5 January, 2025

(feet) DEPTH (meters)	SOIL PROFILE		SAMPLES			PIEZOMETER OR WELL CONSTRUCTION	
	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	LAB ID	Type No.	"N" VALUE	
					PENETRATION TESTING (SPT) ▲		
					20 40 60 80	20 40 60 80	
					40 80 120 160	10 20 30 40	
70	SANDY SILT TILL: Grey, some clay, trace of gravel, moist, very dense			SS-17	100+		10.7%
72				SS-18	100+		
74				SS-19	100+		
76				SS-20	100+		
78				SS-21	100+		
80				SS-22	84		
82				SS-23	69		
84							
86							
88							
90							
92							
94							
96							
98							
100							
102	End of borehole at 30.94m	30.94	75.42				
104							
106							

Groundwater Depth (m): on completion: N/A - Mud Rotary, on 22 January, 2025: 6.73m

DRAWN: T.L.

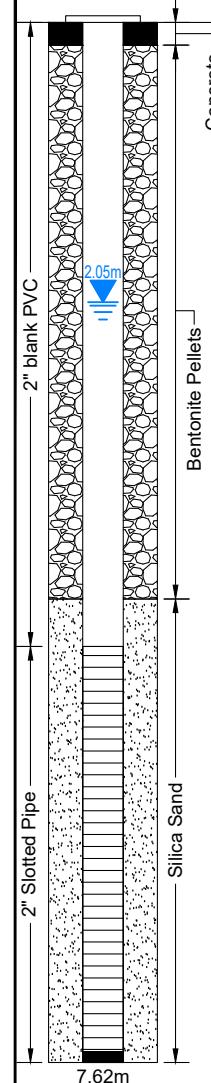
LOGGED: D.G.

CHECKED: C.W.

PROJECT NO.: FE 24-14410/11

PROJECT NAME: GEOTECHNICAL AND HYDROGEOLOGICAL INVESTIGATIONS

LOCATION: 375-417 Kingston Road, Pickering, ON


DRILLING METHOD: CME-75 Truck, Mud Rotary

DRILLING DATE: 17 December, 2024

(feet) DEPTH (meters)	SOIL PROFILE		SAMPLES			PENETRATION TESTING (SPT) ▲ 20 40 60 80	VAPOUR READING (ppm) □ 20 40 60 80	PIEZOMETER OR WELL CONSTRUCTION	
	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	LAB ID	Type No. "N" VALUE				
					SHEAR STRENGTH (Kpa) ■ 40 80 120 160			MOISTURE CONTENT (%) ● 10 20 30 40	
0			104.66						
2	GRANULAR MATERIAL	0.53 / 104.13		SS-1	34				
4	FILL: Dark grey silty sand, trace of clay, gravel, roots and topsoil, moist			SS-2	52				
6	SANDY SILT TILL: Brown, some clay, trace of gravel, moist, very dense	1.68 / 102.98		SS-3	79				
8				SS-4	100+				
10				SS-5	100+				
12									
14	SILT & SAND TILL: Grey, some clay, trace of gravel, moist, very dense	4.11 / 100.55		SS-6	100+				
16									
18				SS-7	100+				
20									
22				SS-8	100+				
24									
26				SS-9	100+				
28									
30									
32									
34									

Groundwater Depth (m): on completion: N/A - Mud Rotary, on 22 January, 2025: 2.05m

DRAWN: T.L. || LOGGED: D.G. || CHECKED: C.W.

LOG OF BOREHOLE

NO. BH106(MW) SHEET. 2 of 2

PROJECT NO.: FE 24-14410/11

PROJECT NAME: GEOTECHNICAL AND HYDROGEOLOGICAL INVESTIGATIONS

LOCATION: 375-417 Kingston Road, Pickering, ON

DRILLING METHOD: CME-75 Truck, Mud Rotary

DRILLING DATE: 17 December, 2024

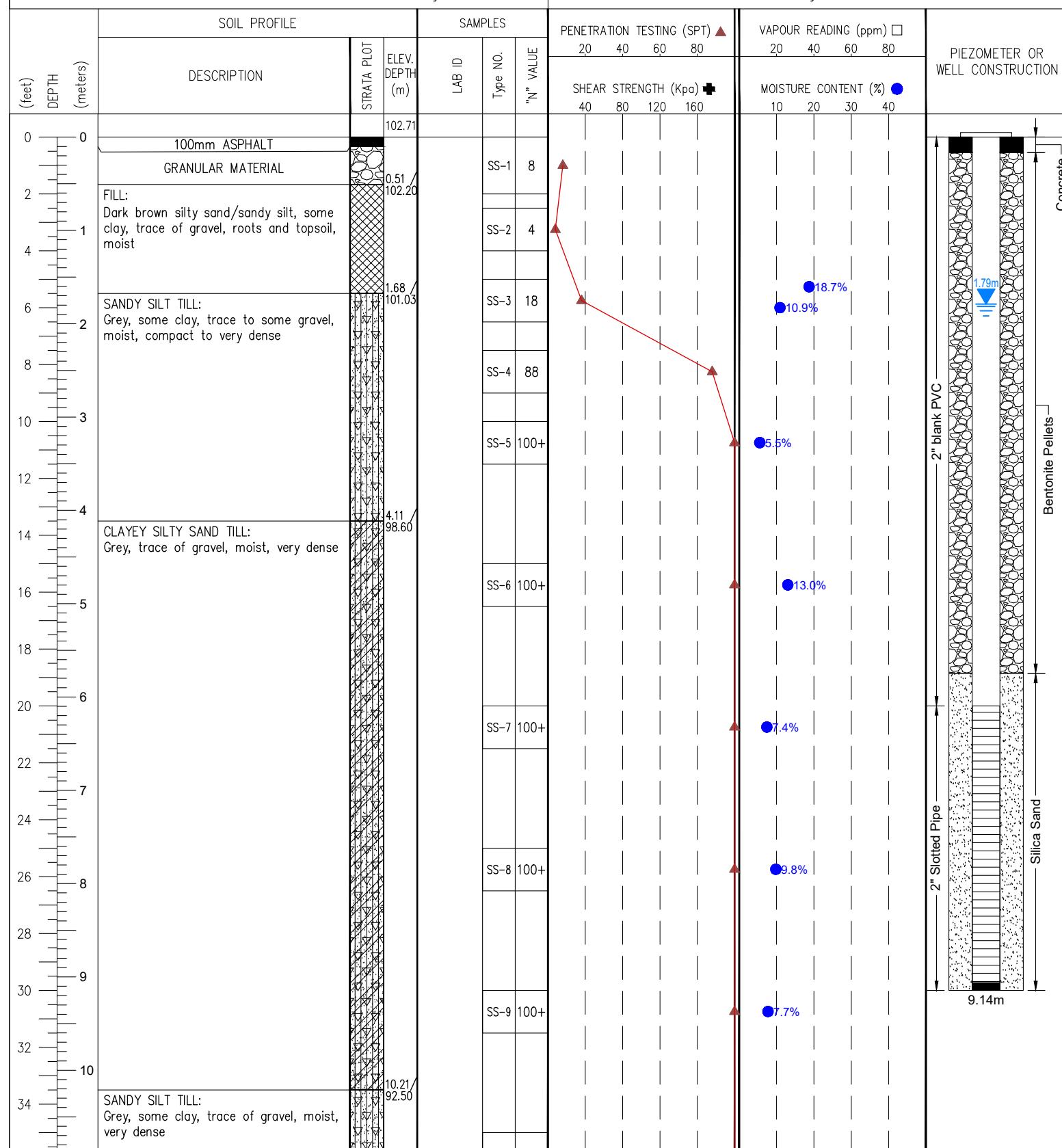
(feet) DEPTH (meters)	SOIL PROFILE		SAMPLES			PIEZOMETER OR WELL CONSTRUCTION	
	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	LAB ID	Type NO.		
					"N" VALUE		
					PENETRATION TESTING (SPT) ▲	VAPOUR READING (ppm) □	
					20 40 60 80	20 40 60 80	
					40 80 120 160	Shear Strength (Kpa) ■	MOISTURE CONTENT (%) ●
						40 80 120 160	10 20 30 40
36	SILT & SAND TILL: Grey, some clay, trace of gravel, moist, very dense			SS-10	100+		
38				SS-11	100+		
40				SS-12	100+		
42				SS-13	100+		
44				SS-14	100+		
46				SS-15	100+		
48				SS-15	57		
50							
52							
54							
56							
58							
60							
62							
64							
66							
68							
70							
	End of borehole at 20.27m		20.27 84.39				

Groundwater Depth (m): on completion: N/A - Mud Rotary, on 22 January, 2025: 2.05m

DRAWN: T.L.

LOGGED: D.G.

CHECKED: C.W.


PROJECT NO.: FE 24-14410/11

PROJECT NAME: GEOTECHNICAL AND HYDROGEOLOGICAL INVESTIGATIONS

LOCATION: 375-417 Kingston Road, Pickering, ON

DRILLING METHOD: CME-75 Truck, Mud Rotary

DRILLING DATE: 2 January, 2025

Groundwater Depth (m): on completion: N/A - Mud Rotary, on 22 January, 2025: 1.79m

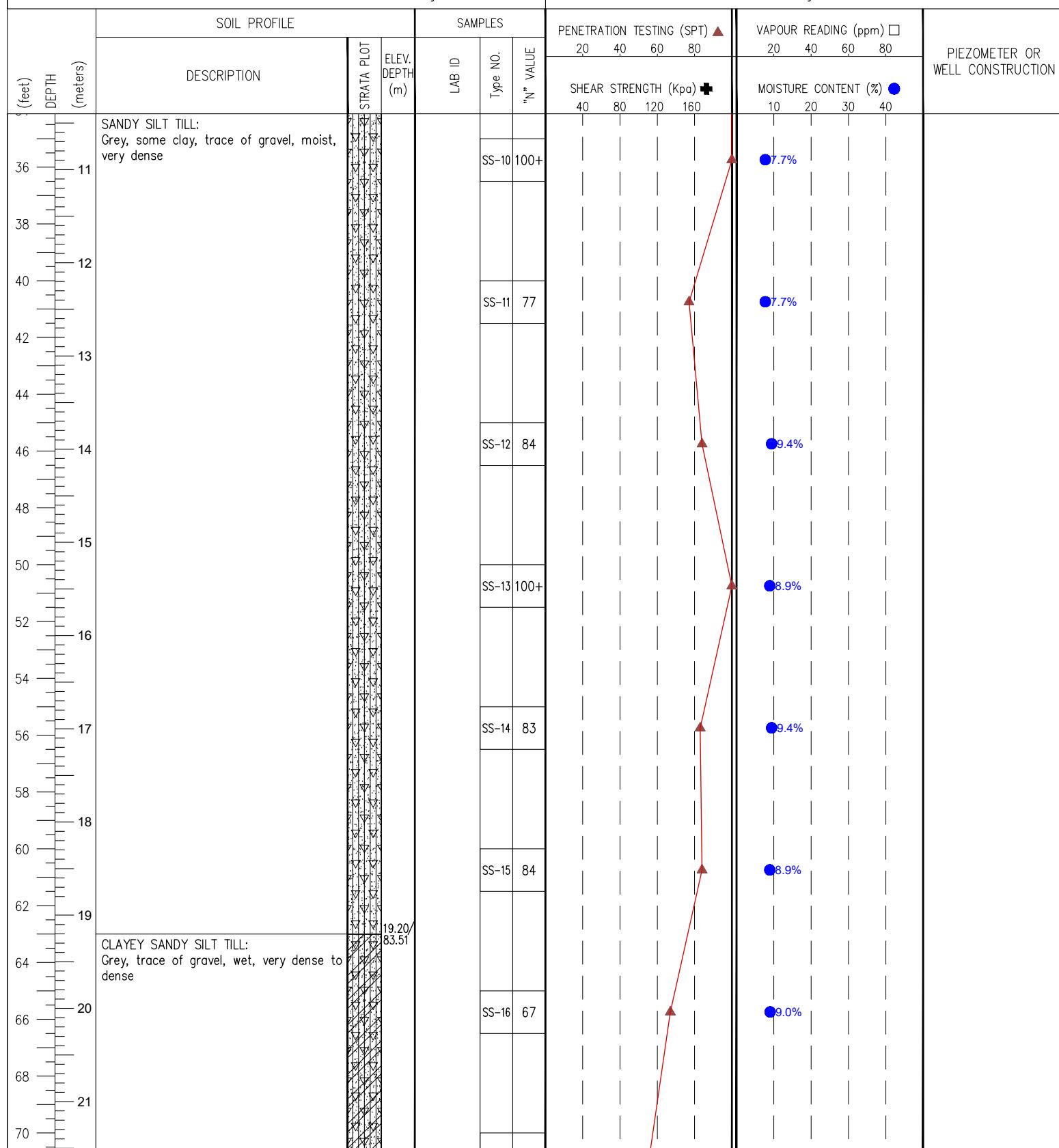
DRAWN: T.L.

LOGGED: D.G.

CHECKED: C.W.

LOG OF BOREHOLE

NO. BH107(MW) SHEET. 2 of 3


PROJECT NO.: FE 24-14410/11

PROJECT NAME: GEOTECHNICAL AND HYDROGEOLOGICAL INVESTIGATIONS

LOCATION: 375-417 Kingston Road, Pickering, ON

DRILLING METHOD: CME-75 Truck, Mud Rotary

DRILLING DATE: 2 January, 2025

Groundwater Depth (m): on completion: N/A - Mud Rotary, on 22 January, 2025: 1.79m

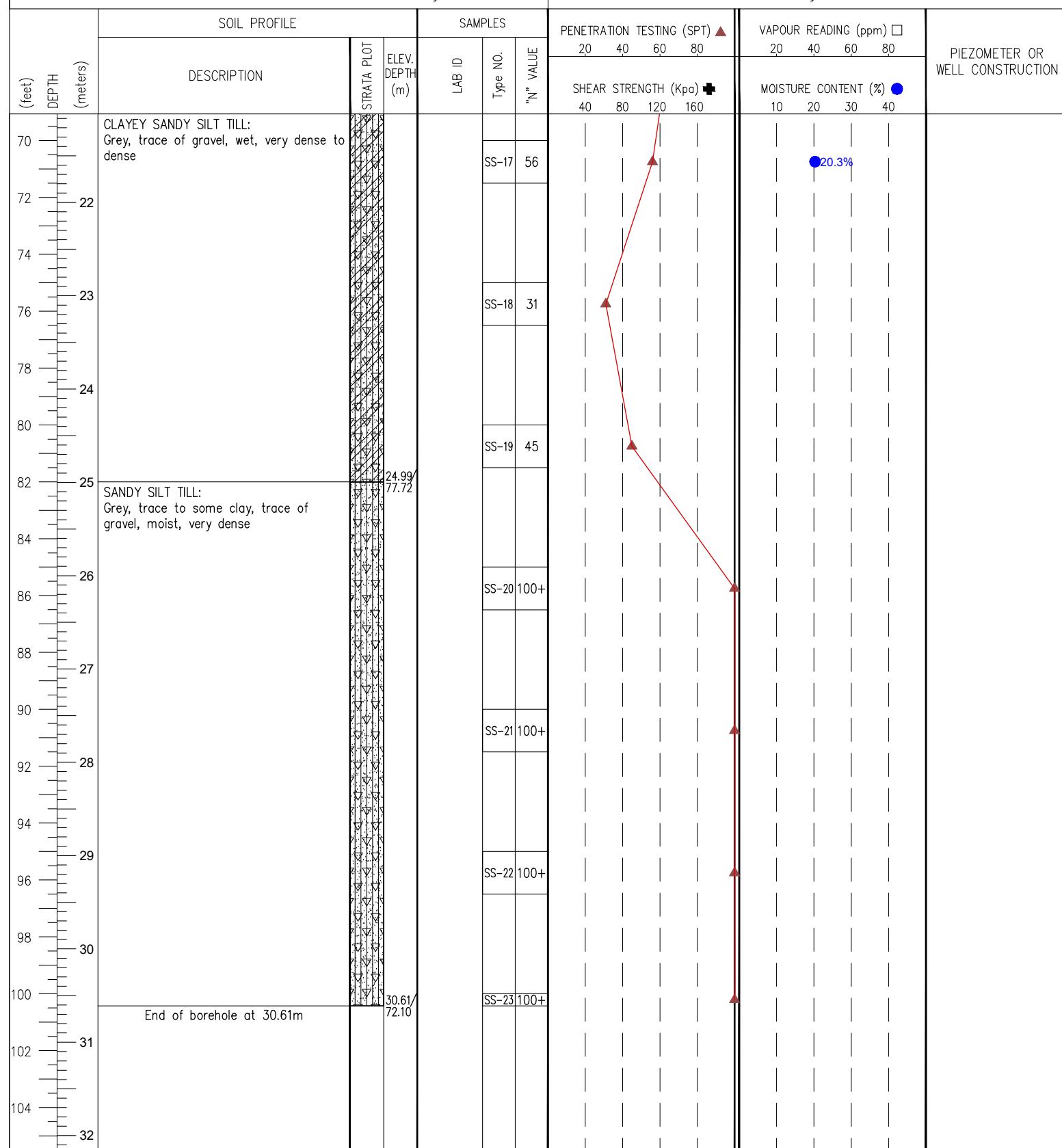
DRAWN: T.L.

LOGGED: D.G.

CHECKED: C.W.

LOG OF BOREHOLE

NO. BH107(MW) SHEET. 3 of 3


PROJECT NO.: FE 24-14410/11

PROJECT NAME: GEOTECHNICAL AND HYDROGEOLOGICAL INVESTIGATIONS

LOCATION: 375-417 Kingston Road, Pickering, ON

DRILLING METHOD: CME-75 Truck, Mud Rotary

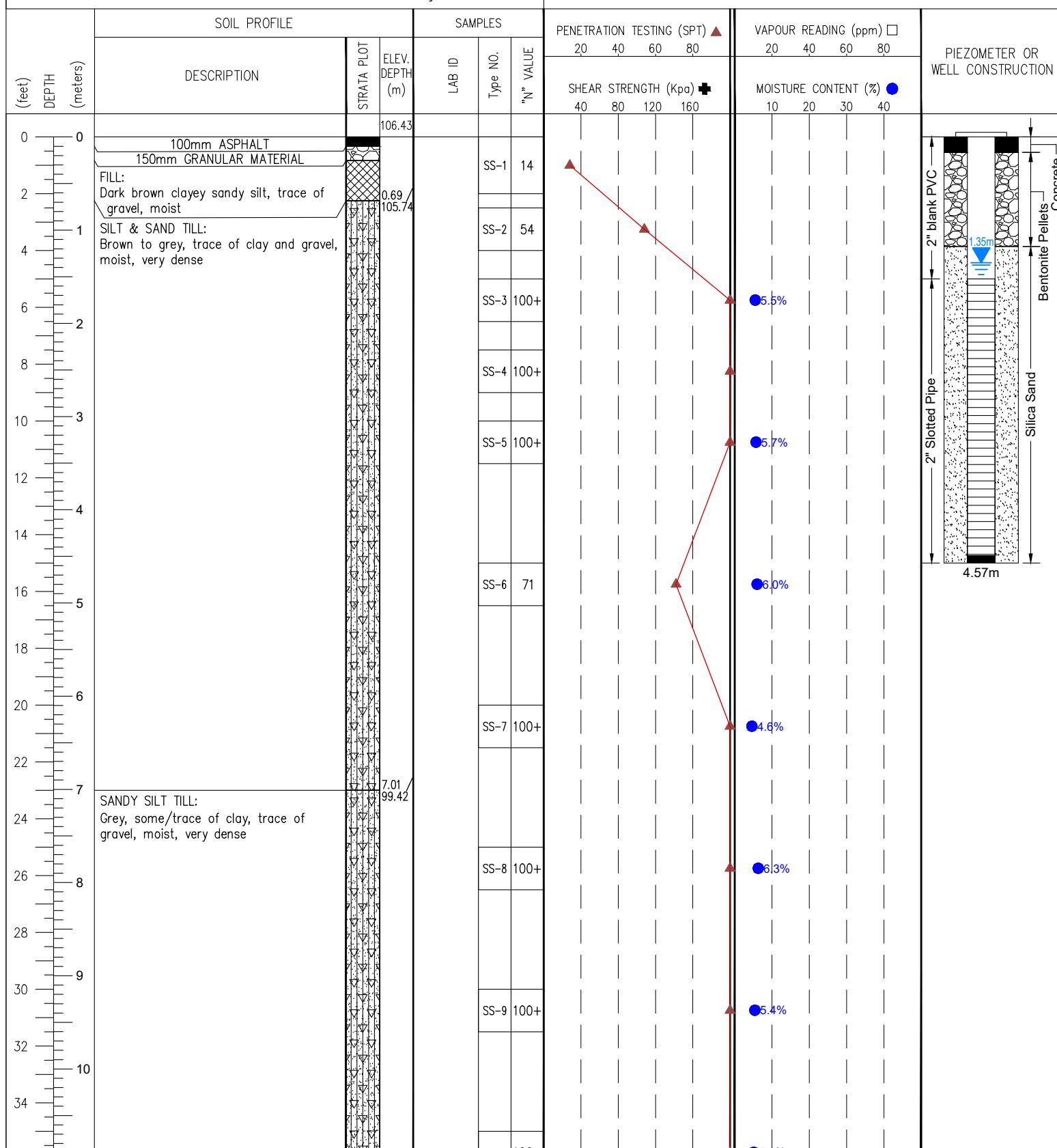
DRILLING DATE: 2 January, 2025

Groundwater Depth (m): on completion: N/A - Mud Rotary, on 22 January, 2025: 1.79m

DRAWN: T.L.

LOGGED: D.G.

CHECKED: C.W.


PROJECT NO.: FE 24-14410/11

PROJECT NAME: GEOTECHNICAL AND HYDROGEOLOGICAL INVESTIGATIONS

LOCATION: 375-417 Kingston Road, Pickering, ON

DRILLING METHOD: CME-75 Truck, Mud Rotary

DRILLING DATE: 18 December, 2024

Groundwater Depth (m): on completion: N/A - Mud Rotary, on 22 January, 2025: 1.35m

DRAWN: T.L.

LOGGED: D.G.

CHECKED: C.W.

LOG OF BOREHOLE

NO. BH108(MW) SHEET. 2 of 2

PROJECT NO.: FE 24-14410/11

PROJECT NAME: GEOTECHNICAL AND HYDROGEOLOGICAL INVESTIGATIONS

LOCATION: 375-417 Kingston Road, Pickering, ON

DRILLING METHOD: CME-75 Truck, Mud Rotary

DRILLING DATE: 18 December, 2024

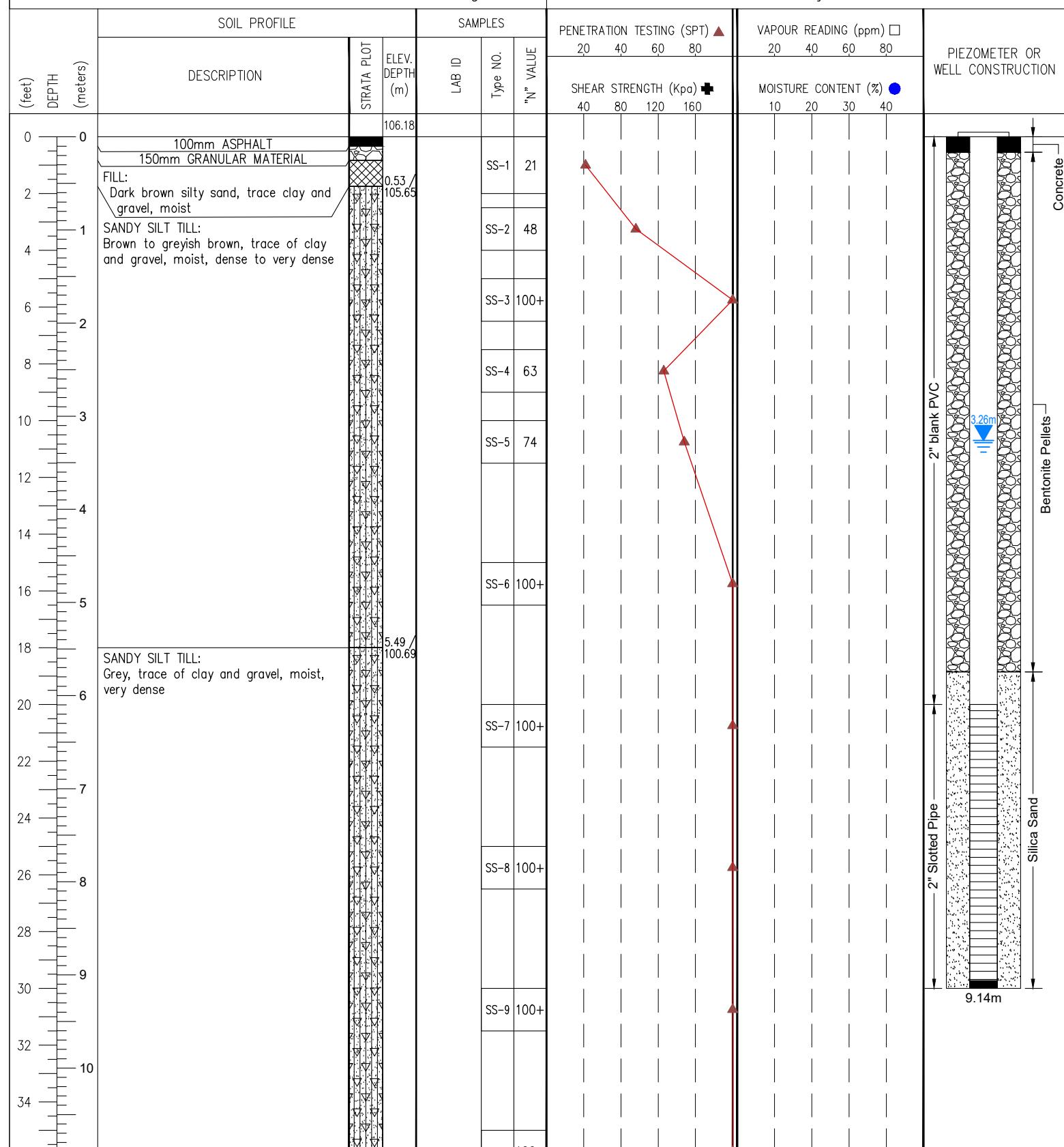
(feet) DEPTH (meters)	SOIL PROFILE		SAMPLES			PIEZOMETER OR WELL CONSTRUCTION
	STRATA PLOT	ELEV. DEPTH (m)	LAB ID	Type NO.	"N" VALUE	
				PENETRATION TESTING (SPT) ▲	VAPOUR READING (ppm) □	
				20 40 60 80	20 40 60 80	
				40 80 120 160	10 20 30 40	
36	SANDY SILT TILL: Grey, some/trace of clay, trace of gravel, moist, very dense	11	SS-10	100+	5.1%	
38						
40		12.24 94.19	SS-11	100+	5.5%	
42	End of borehole at 12.24m					
44						
46						
48						
50						
52						
54						
56						
58						
60						
62						
64						
66						
68						
70						

Groundwater Depth (m): on completion: N/A - Mud Rotary, on 22 January, 2025: 1.35m

DRAWN: T.L.

LOGGED: D.G.

CHECKED: C.W.


PROJECT NO.: FE 24-14410/11

PROJECT NAME: GEOTECHNICAL AND HYDROGEOLOGICAL INVESTIGATIONS

LOCATION: 375-417 Kingston Road, Pickering, ON

DRILLING METHOD: CME-75 Truck, Solid Stem Auger

DRILLING DATE: 10 January, 2025

Groundwater Depth (m): on completion: Dry; on 22 January, 2025: 3.26m

DRAWN: T.L.

LOGGED: D.G.

CHECKED: C.W.

LOG OF BOREHOLE

NO. BH109(MW) SHEET. 2 of 2

PROJECT NO.: FE 24-14410/11

PROJECT NAME: GEOTECHNICAL AND HYDROGEOLOGICAL INVESTIGATIONS

LOCATION: 375-417 Kingston Road, Pickering, ON

DRILLING METHOD: CME-75 Truck, Solid Stem Auger

DRILLING DATE: 10 January, 2025

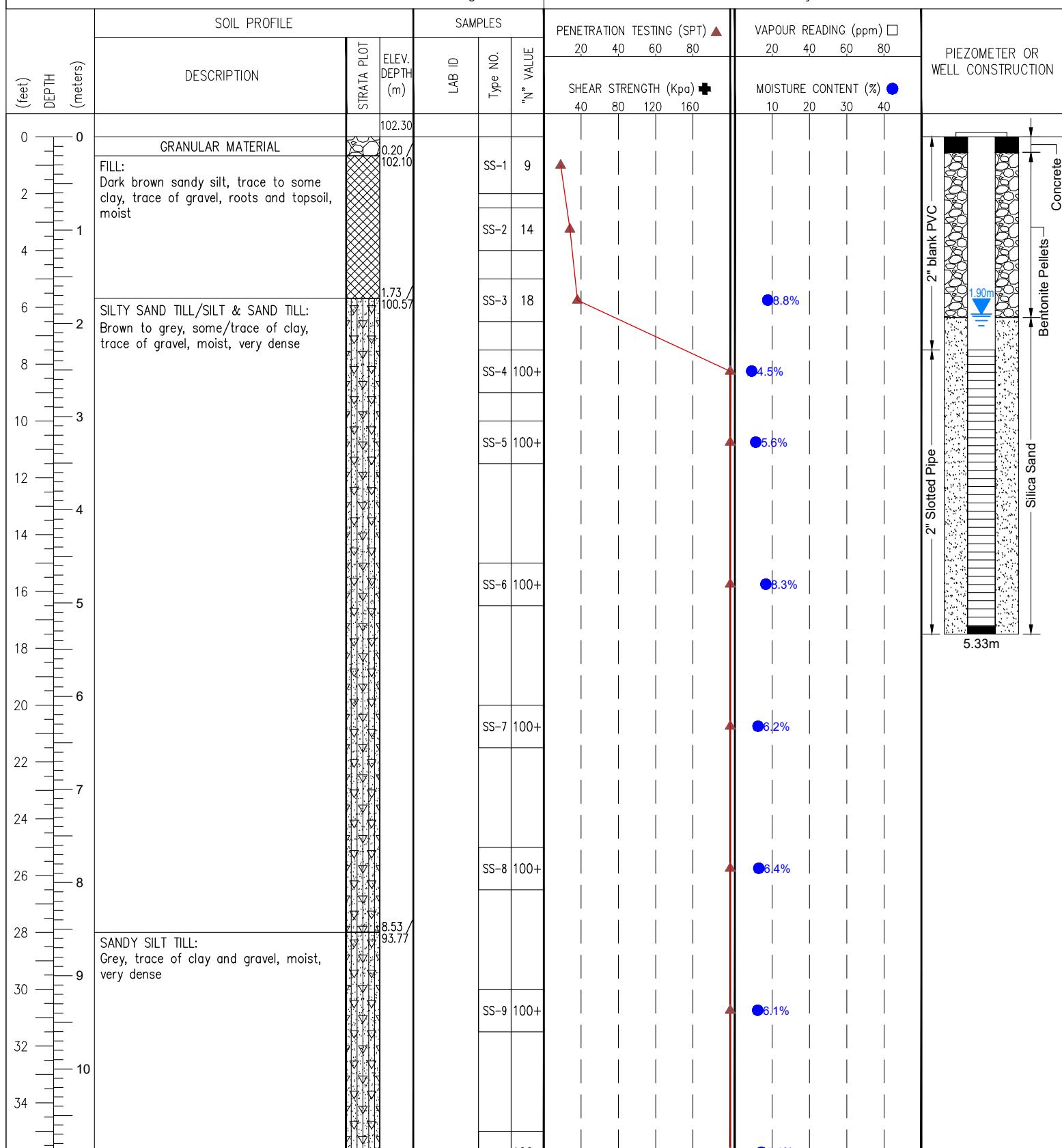
(feet) DEPTH (meters)	SOIL PROFILE		SAMPLES			PIEZOMETER OR WELL CONSTRUCTION	
	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	LAB ID	Type NO.		
					"N" VALUE		
					PENETRATION TESTING (SPT) ▲	VAPOUR READING (ppm) □	
					20 40 60 80	20 40 60 80	
					40 80 120 160	10 20 30 40	MOISTURE CONTENT (%) ●
36	SANDY SILT TILL: Grey, trace of clay and gravel, moist, very dense		12.45	SS-10	100+		
38			93.73	SS-11	100+		
40	End of borehole at 12.45m						
42							
44							
46							
48							
50							
52							
54							
56							
58							
60							
62							
64							
66							
68							
70							

Groundwater Depth (m): on completion: Dry, on 22 January, 2025: 3.26m

DRAWN: T.L.

LOGGED: D.G.

CHECKED: C.W.


PROJECT NO.: FE 24-14410/11

PROJECT NAME: GEOTECHNICAL AND HYDROGEOLOGICAL INVESTIGATIONS

LOCATION: 375-417 Kingston Road, Pickering, ON

DRILLING METHOD: CME-75 Truck, Solid Stem Auger

DRILLING DATE: 3 January, 2025

Groundwater Depth (m): on completion: 4.57m; on 22 January, 2025: 1.90m

DRAWN: T.L.

LOGGED: D.G.

CHECKED: C.W.

LOG OF BOREHOLE

NO. BH110(MW) SHEET. 2 of 2

PROJECT NO.: FE 24-14410/11

PROJECT NAME: GEOTECHNICAL AND HYDROGEOLOGICAL INVESTIGATIONS

LOCATION: 375-417 Kingston Road, Pickering, ON

DRILLING METHOD: CME-75 Truck, Solid Stem Auger

DRILLING DATE: 3 January, 2025

(feet) DEPTH (meters)	SOIL PROFILE		SAMPLES			PIEZOMETER OR WELL CONSTRUCTION	
	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	LAB ID	Type NO.		
					"N" VALUE		
						PENETRATION TESTING (SPT) ▲	VAPOUR READING (ppm) □
						20 40 60 80	20 40 60 80
						40 80 120 160	10 20 30 40
						SHEAR STRENGTH (Kpa) ■	MOISTURE CONTENT (%) ●
						40 80 120 160	10 20 30 40
36	SANDY SILT TILL: Grey, trace of clay and gravel, moist, very dense			SS-10	100+		
38							
40				SS-11	100+		
42	End of borehole at 12.62m		12.62 89.68				
44							
46							
48							
50							
52							
54							
56							
58							
60							
62							
64							
66							
68							
70							

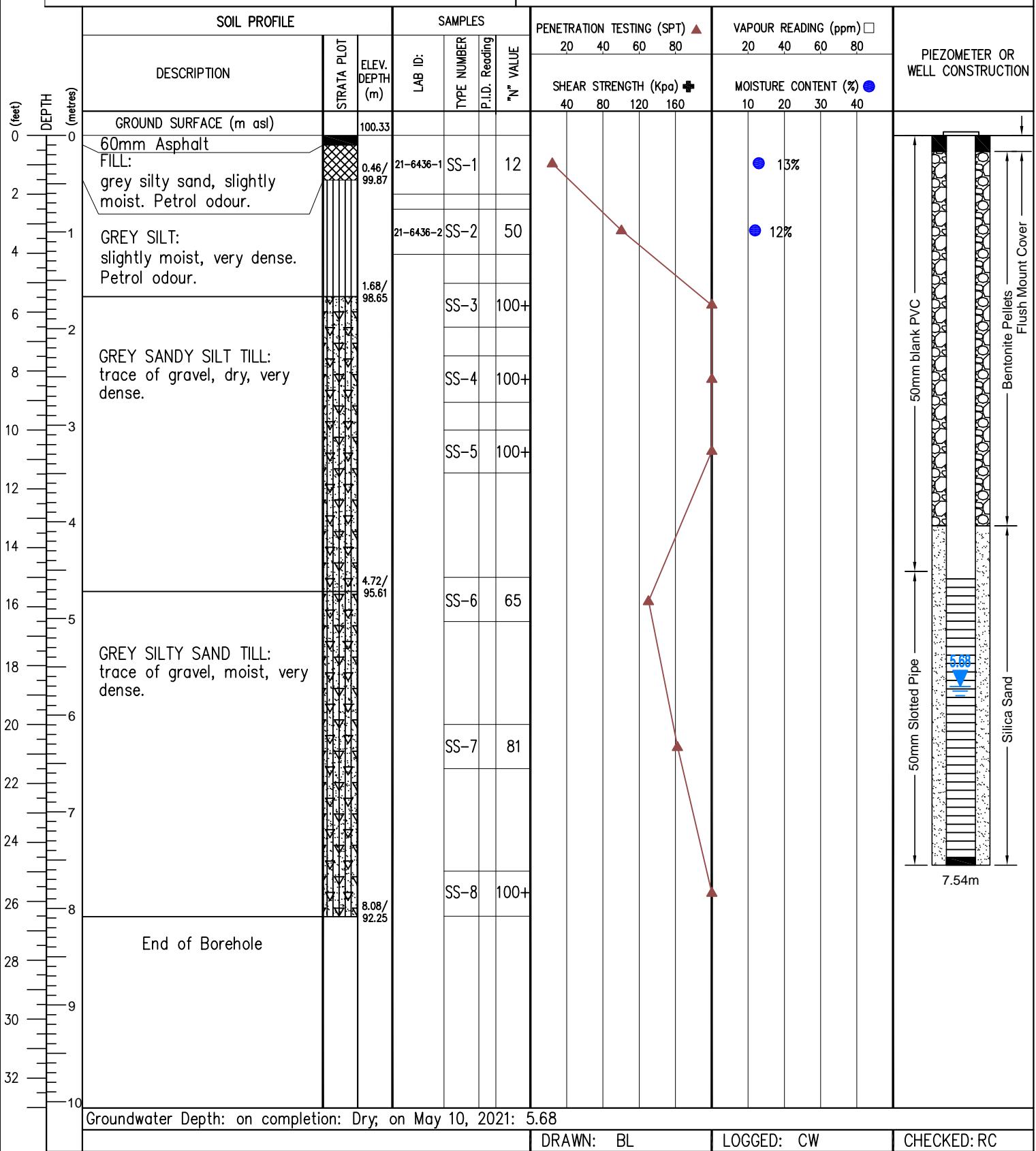
Groundwater Depth (m): on completion: 4.57m; on 22 January, 2025: 1.90m

DRAWN: T.L.

LOGGED: D.G.

CHECKED: C.W.

LOG OF BOREHOLE NO. BH1(MW) SHEET. 1 of 1


PROJECT NO.: FE-P 21-11144 & 21-11145

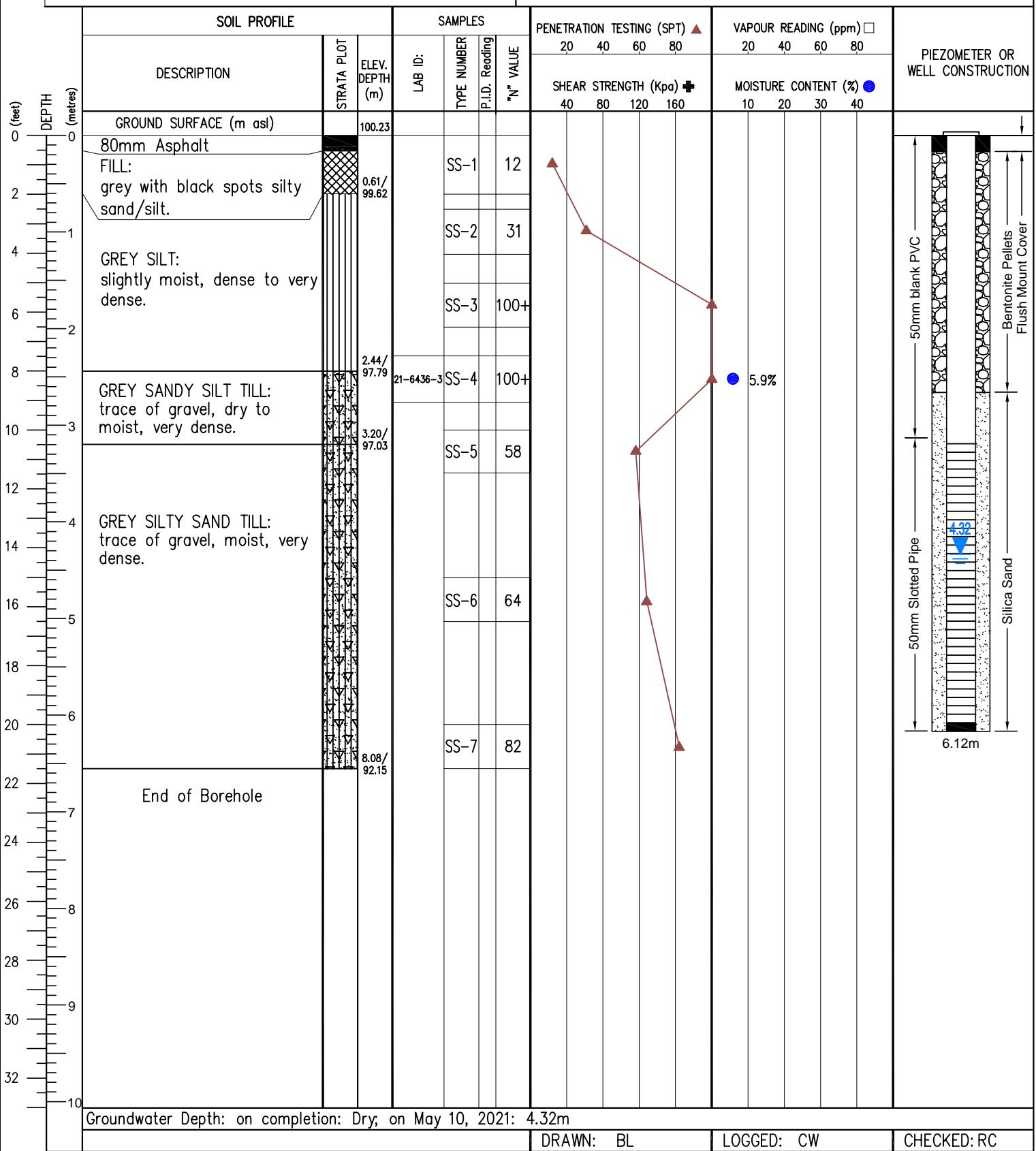
PROJECT NAME: Phase II ESA & Geotechnical Investigation

LOCATION: 375 Kingston Road, Pickering, Ontario

DRILLING METHOD: D-50, Solid Stem

DRILLING DATE: April 28, 2021

LOG OF BOREHOLE NO. BH2(MW) SHEET. 1 of 1


PROJECT NO.: FE-P 21-11144 & 21-11145

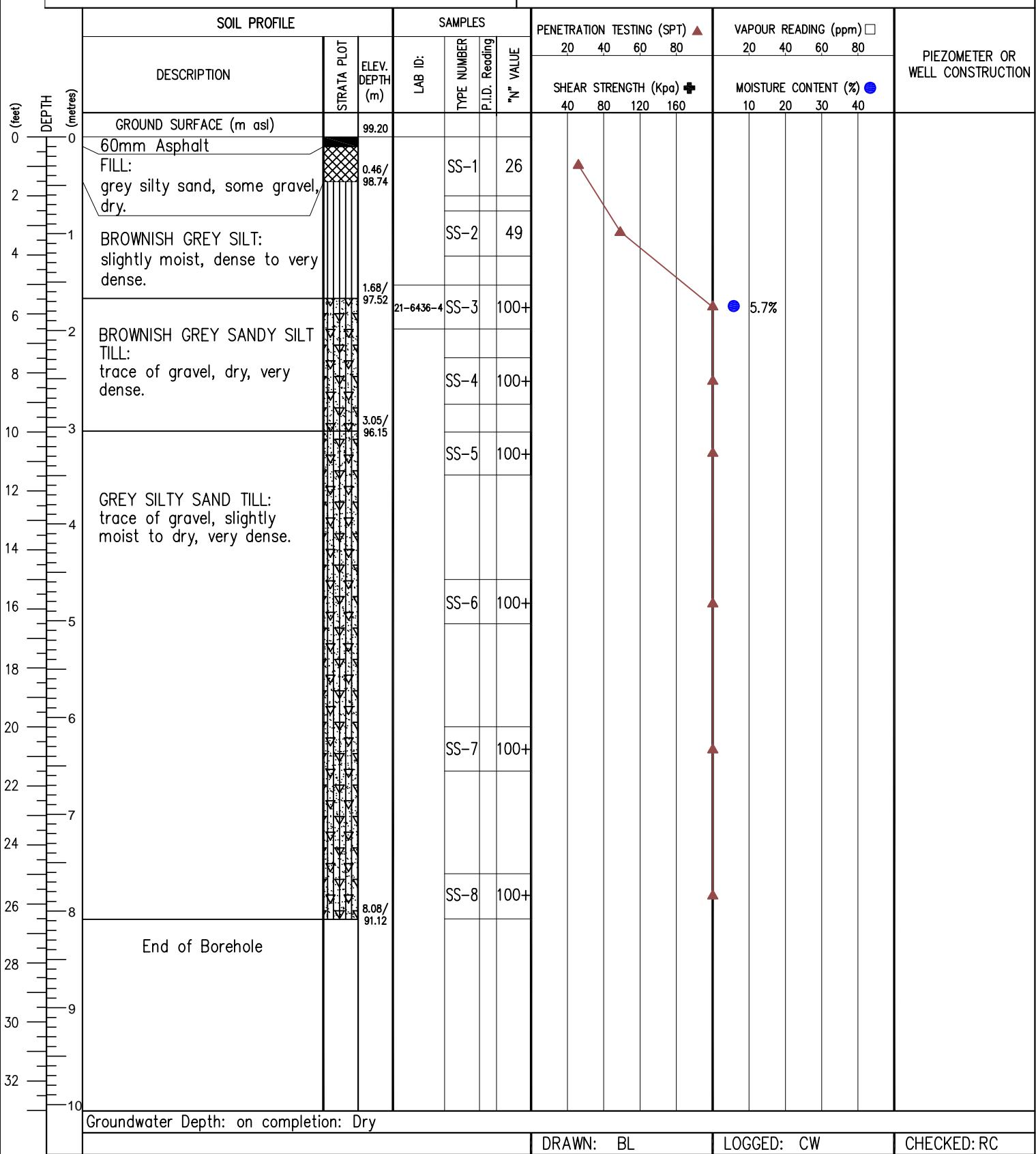
PROJECT NAME: Phase II ESA & Geotechnical Investigation

LOCATION: 375 Kingston Road, Pickering, Ontario

DRILLING METHOD: D-50, Solid Stem

DRILLING DATE: April 28, 2021

LOG OF BOREHOLE NO. BH3 SHEET. 1 of 1


PROJECT NO.: FE-P 21-11144 & 21-11145

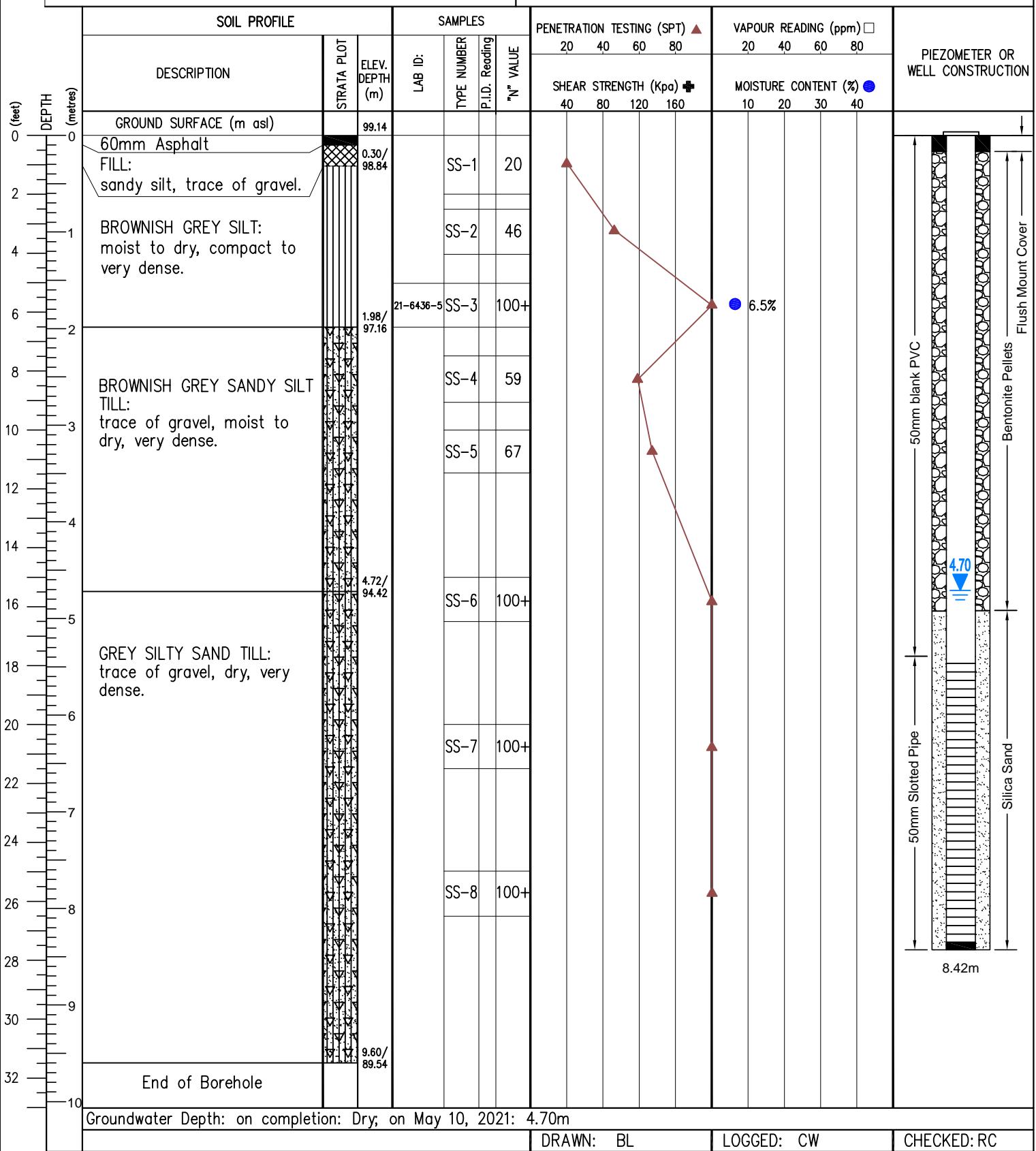
PROJECT NAME: Phase II ESA & Geotechnical Investigation

LOCATION: 375 Kingston Road, Pickering, Ontario

DRILLING METHOD: D-50, Solid Stem

DRILLING DATE: April 28, 2021

LOG OF BOREHOLE NO. BH4(MW) SHEET. 1 of 1


PROJECT NO.: FE-P 21-11144 & 21-11145

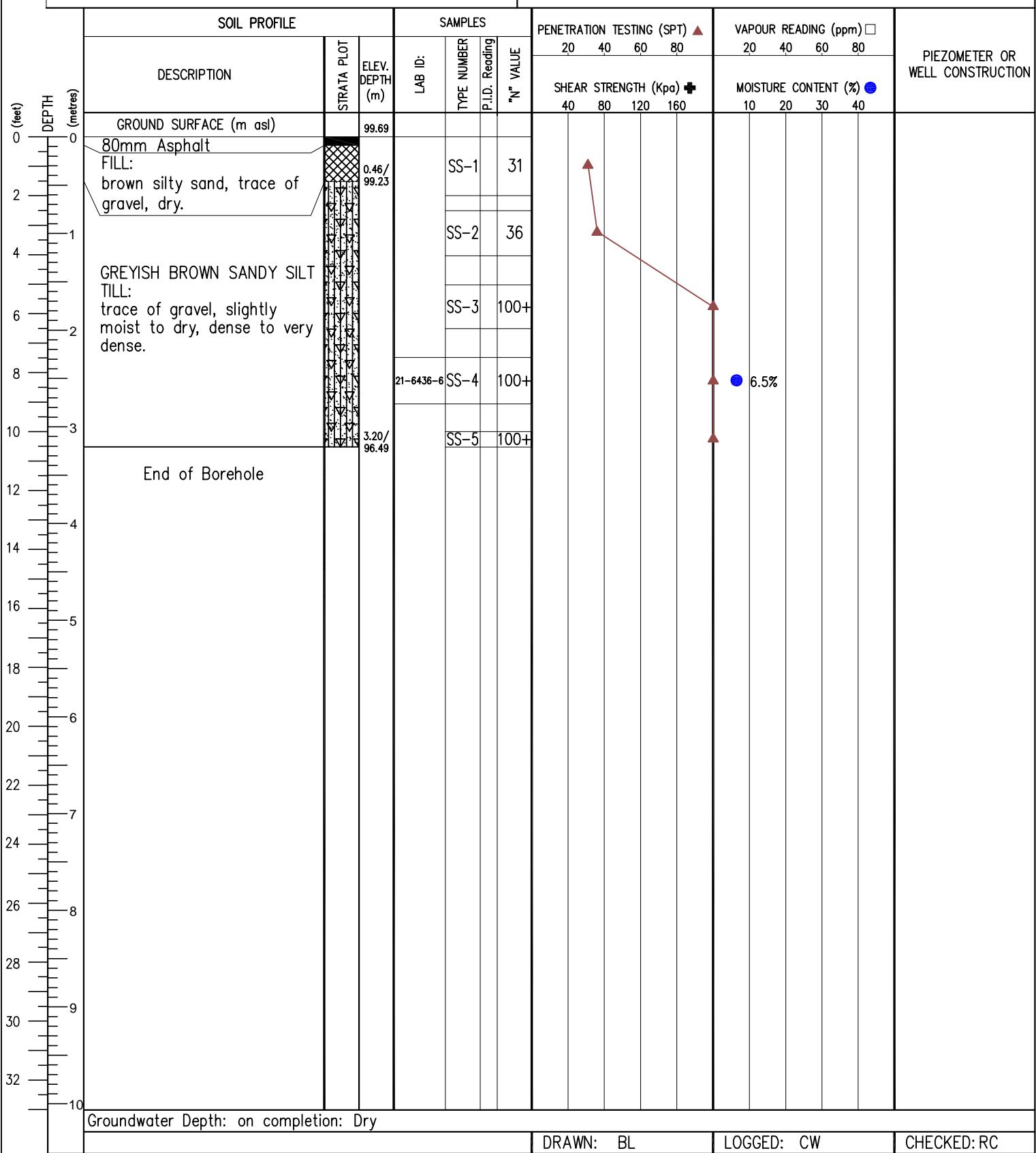
PROJECT NAME: Phase II ESA & Geotechnical Investigation

LOCATION: 375 Kingston Road, Pickering, Ontario

DRILLING METHOD: D-50, Solid Stem

DRILLING DATE: April 28, 2021

LOG OF BOREHOLE NO. BH5 SHEET. 1 of 1


PROJECT NO.: FE-P 21-11144 & 21-11145

PROJECT NAME: Phase II ESA & Geotechnical Investigation

LOCATION: 375 Kingston Road, Pickering, Ontario

DRILLING METHOD: D-50, Solid Stem

DRILLING DATE: April 28, 2021

APPENDIX C – MOISTURE CONTENT AND GRAIN SIZE DISTRIBUTION ANALYSES

F i s h e r E n g i n e e r i n g L i m i t e d

Project No. FH24-14411_V2 March 7, 2025

Project Name: Geotechnical Investigation

F.E. Lab #: 25-101

Client: 375 Kingston Road Corporation

Date Sampled: 17-Dec-2024

Project ID: 24-14410

Date Received: 6-Jan-2025

Location: 375-417 Kingston Road,
Pickering, Ontario

Date Reported: 4-Mar-2025

Certificate of Analysis

Analyses	Matrix	Quantity	Testing Date	Method Reference
Moisture Content	Soil	63	13-Jan-25	ASTM D2216
Grain Size (Sieve Analysis)	Soil	21	04-Feb-25	LS-602
Grain Size (Hydrometer)	Soil	7	21-Feb-25	LS-702
Atterberg test	Soil	0	N.A.	LS-703/704

Authorized by:

Behnam Sayad Pour
Behnam Sayad Zanjani
Geo-Lab Supervisor

400 Esna Park Drive, Unit 15, Markham, ON L3R 3K2
Tel:(905) 475-7755 www.fishereng.com

Certificate of Analysis

Analysis Requested:	Moisture Content	Sample Description:	63 Soil Sample(s)
----------------------------	------------------	----------------------------	-------------------

Sample Info	BH101 SS3	BH101 SS5	BH101 SS6	BH101 SS7	BH101 SS8	BH101 SS9
Sample Depth (m)	1.53-1.98	3.05-3.51	4.58-5.03	6.1-6.56	7.63-8.08	9.15-9.61
Moisture Content (%)	12.2	5.1	8.2	6.9	5.0	4.6

Sample Info	BH101 SS10	BH101 SS11	BH103 SS3	BH103 SS5	BH103 SS6	BH103 SS7
Sample Depth (m)	10.68-11.13	12.2-12.66	1.53-1.98	3.05-3.51	4.58-5.03	6.1-6.56
Moisture Content (%)	4.4	5.0	10.0	5.5	6.0	5.8

Sample Info	BH103 SS8	BH103 SS9	BH103 SS10	BH103 SS11	BH105 SS3	BH105 SS5
Sample Depth (m)	7.63-8.08	9.15-9.61	10.68-11.13	12.2-12.66	1.53-1.98	3.05-3.51
Moisture Content (%)	5.5	6.3	6.6	7.9	5.4	6.8

Sample Info	BH105 SS6	BH105 SS7	BH105 SS8	BH105 SS9	BH105 SS10	BH105 SS11
Sample Depth (m)	4.58-5.03	6.1-6.56	7.63-8.08	9.15-9.61	10.68-11.13	12.2-12.66
Moisture Content (%)	5.5	6.4	5.4	4.9	8.7	7.9

Sample Info	BH105 SS12	BH105 SS13	BH105 SS14	BH105 SS15	BH105 SS16	BH105 SS17
Sample Depth (m)	13.73-14.18	15.25-15.71	16.78-17.23	18.3-18.76	19.83-20.28	21.35-21.81
Moisture Content (%)	7.9	13.1	8.5	10.4	9.6	10.7

Sample Info	BH106 SS5	BH106 SS6	BH107 SS3 A	BH107 SS3 B	BH107 SS5	BH107 SS6
Sample Depth (m)	3.05-3.51	4.58-5.03	1.53-1.68	1.68-1.98	3.05-3.51	4.58-5.03
Moisture Content (%)	9.5	6.8	18.7	10.9	5.5	13.0

Sample Info	BH107 SS7	BH107 SS8	BH107 SS9	BH107 SS10	BH107 SS11	BH107 SS12
Sample Depth (m)	6.1-6.56	7.63-8.08	9.15-9.61	10.68-11.13	12.2-12.66	13.73-14.18
Moisture Content (%)	7.4	9.8	7.7	7.7	7.7	9.4

Sample Info	BH107 SS13	BH107 SS14	BH107 SS15	BH107 SS16	BH107 SS17	BH108 SS3
Sample Depth (m)	15.25-15.71	16.78-17.23	18.3-18.76	19.83-20.28	21.35-21.81	1.53-1.98
Moisture Content (%)	8.9	9.4	8.9	9.0	20.3	5.5

Certificate of Analysis

Analysis Requested:	Moisture Content	Sample Description:	63 Soil Sample(s)
----------------------------	------------------	----------------------------	-------------------

Sample Info	BH108 SS5	BH108 SS6	BH108 SS7	BH108 SS8	BH108 SS9	BH108 SS10
Sample Depth (m)	3.05-3.51	4.58-5.03	6.1-6.56	7.63-8.08	9.15-9.61	10.68-11.13
Moisture Content (%)	5.7	6.0	4.6	6.3	5.4	5.1

Sample Info	BH108 SS11	BH110 SS3	BH110 SS5	BH110 SS6	BH110 SS7	BH110 SS8
Sample Depth (m)	12.2-12.66	1.53-1.98	3.05-3.51	4.58-5.03	6.1-6.56	7.63-8.08
Moisture Content (%)	5.5	8.8	4.5	5.6	8.3	6.2

Sample Info	BH110 SS9	BH110 SS10	BH110 SS11			
Sample Depth (m)	9.15-9.61	10.68-11.13	12.2-12.66			
Moisture Content (%)	6.4	6.1	7.1			

Certificate of Analysis

Analysis Requested:	Grain Size (Sieve Analysis)	Sample Quantity:	21	Soil Sample(s)
----------------------------	------------------------------	-------------------------	----	----------------

Sample Info	25-104 <i>BH101 SS9</i>	25-105 <i>BH101 SS11</i>	25-106 <i>BH103 SS5</i>	25-107 <i>BH103 SS7</i>	25-108 <i>BH103 SS9</i>	25-109 <i>BH103 SS11</i>
Sample Depth (m)	9.15-9.61	12.2-12.66	3.05-3.51	6.1-6.56	9.15-9.61	12.2-12.66
Grain Size (%)						
>19mm	0.0	0.0	0.0	0.0	0.0	0.0
9.5mm-19mm	6.3	3.5	10.6	0.0	0.0	0.0
4.75mm-9.5mm	0.8	2.2	1.5	4.5	1.4	2.1
1.18mm-4.75mm	4.6	3.7	6.3	6.7	3.9	3.1
300um-1.18mm	8.9	8.7	9.9	12.1	9.1	7.1
75um-300um	25.4	25.9	23.2	30.7	27.6	23.6
<75um	54.0	55.9	48.5	46.0	58.0	64.0
Clay and Silt	54.0	55.9	48.5	46.0	58.0	64.0
Sand	38.9	38.3	39.4	49.5	40.7	33.8
Gravel	7.0	5.8	12.1	4.5	1.4	2.1

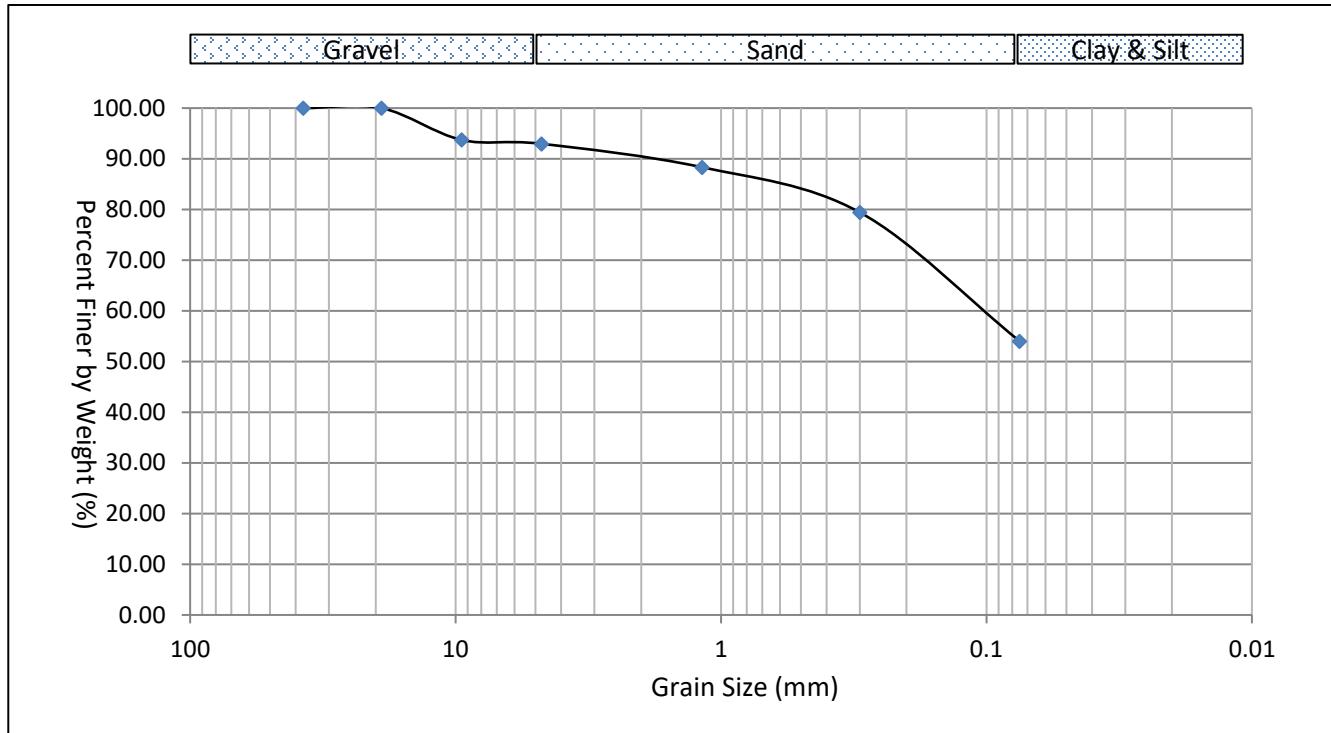
Sample Info	25-112 <i>BH105 SS9</i>	25-113 <i>BH105 SS11</i>	25-114 <i>BH105 SS13</i>	25-116 <i>BH107 SS7</i>	25-117 <i>BH107 SS9</i>	25-118 <i>BH107 SS11</i>
Sample Depth (m)	9.15-9.61	12.2-12.66	15.25-15.71	6.1-6.56	9.15-9.61	12.2-12.66
Grain Size (%)						
>19mm	0.0	0.0	0.0	0.0	0.0	3.2
9.5mm-19mm	5.0	0.0	0.0	8.4	0.0	2.3
4.75mm-9.5mm	1.8	3.2	2.6	3.8	2.4	5.5
1.18mm-4.75mm	3.5	4.3	9.7	5.5	4.6	3.0
300um-1.18mm	9.2	9.8	17.1	9.6	9.3	8.0
75um-300um	26.1	26.7	54.5	21.8	27.3	24.7
<75um	54.3	55.9	16.1	50.9	56.4	53.3
Clay and Silt	54.3	55.9	16.1	50.9	56.4	53.3
Sand	38.8	40.8	81.3	36.9	41.2	35.7
Gravel	6.9	3.2	2.6	12.2	2.4	11.0

Sample Info	25-119 <i>BH107 SS13</i>	25-120 <i>BH108 SS5</i>	25-121 <i>BH108 SS7</i>	25-122 <i>BH108 SS9</i>	25-123 <i>BH108 SS11</i>	25-124 <i>BH110 SS5</i>
Sample Depth (m)	15.25-15.71	3.05-3.51	6.1-6.56	9.15-9.61	12.2-12.66	3.05-3.51
Grain Size (%)						
>19mm	0.0	0.0	11.1	0.0	0.0	11.5
9.5mm-19mm	0.0	0.0	8.1	0.0	1.7	1.9
4.75mm-9.5mm	2.5	1.8	2.3	3.0	4.3	3.5
1.18mm-4.75mm	2.7	6.2	5.1	4.6	4.5	5.8
300um-1.18mm	6.3	13.5	8.9	9.4	8.8	9.4
75um-300um	25.5	27.5	20.2	26.6	24.8	21.7
<75um	63.0	51.1	44.2	56.4	55.9	46.1
Clay and Silt	63.0	51.1	44.2	56.4	55.9	46.1
Sand	34.5	47.2	34.3	40.6	38.0	37.0
Gravel	2.5	1.8	21.5	3.0	6.1	16.9

Certificate of Analysis

Analysis Requested:	Grain Size (Sieve Analysis)	Sample Quantity:	21	Soil Sample(s)
----------------------------	------------------------------	-------------------------	----	----------------

Sample Info	25-125 <i>BH110 SS7</i>	25-126 <i>BH110 SS9</i>	25-127 <i>BH110 SS11</i>			
Sample Depth (m)	6.1-6.56	9.15-9.61	12.2-12.66			
Grain Size (%)						
>19mm	0.0	0.0	0.0			
9.5mm-19mm	5.3	0.0	0.0			
4.75mm-9.5mm	0.3	2.3	1.6			
1.18mm-4.75mm	6.1	4.1	3.6			
300um-1.18mm	10.3	9.0	7.7			
75um-300um	22.1	26.7	25.4			
<75um	55.8	57.9	61.8			
Clay and Silt	55.8	57.9	61.8			
Sand	38.5	39.8	36.6			
Gravel	5.6	2.3	1.6			

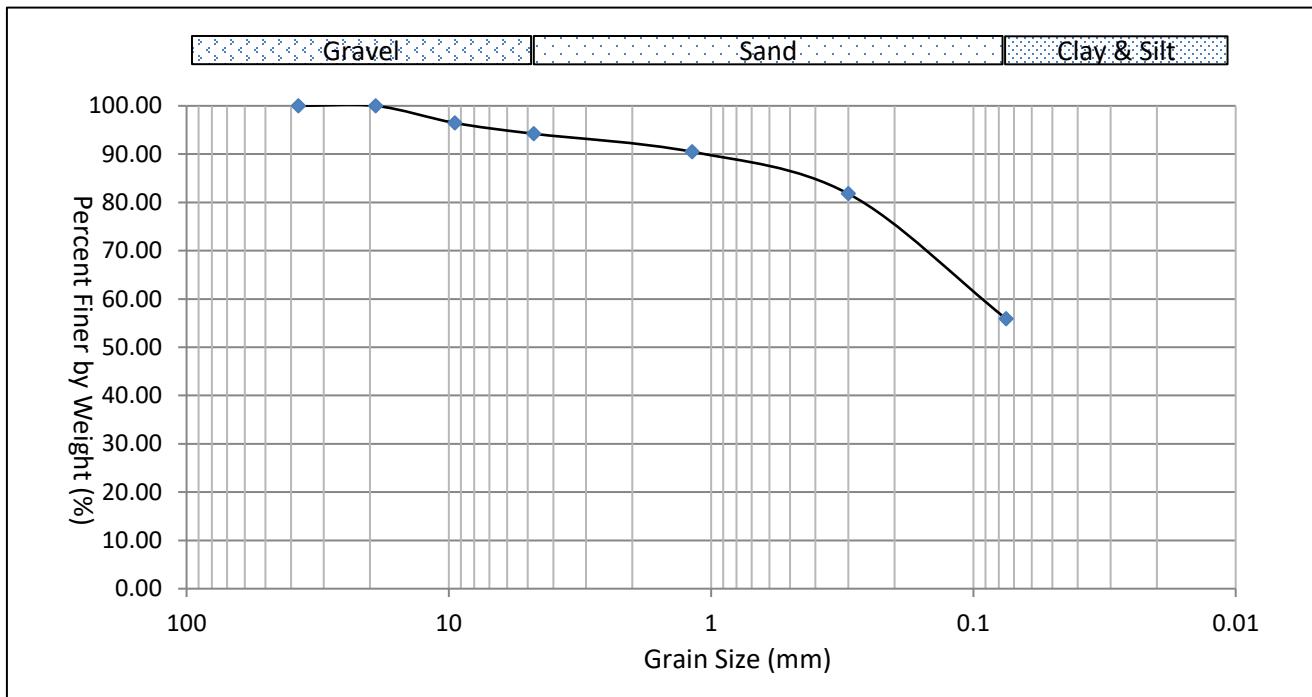

Grain Size Distribution

Sample ID: 25-104 BH101 SS9 (9.15-9.61m)

Gravel: 7%

Sand: 38.9%

Clay and Silt 54%


Grain Size Distribution

Sample ID: 25-105 BH101 SS11 (12.2-12.66m)

Gravel: 5.8%

Sand: 38.3%

Clay and Silt 55.9%

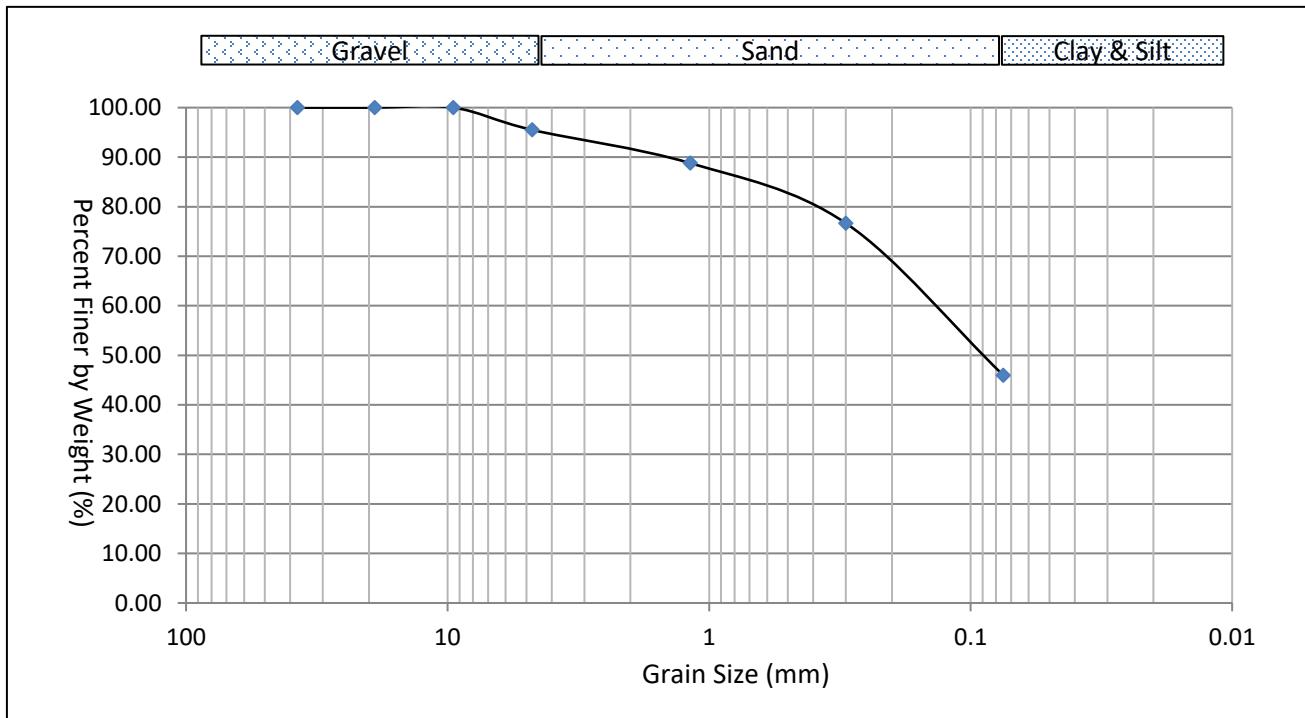
Grain Size Distribution

Sample ID: 25-106 BH103 SS5 (3.05-3.51m)

Gravel: 12.1%

Sand: 39.4%

Clay and Silt 48.5%

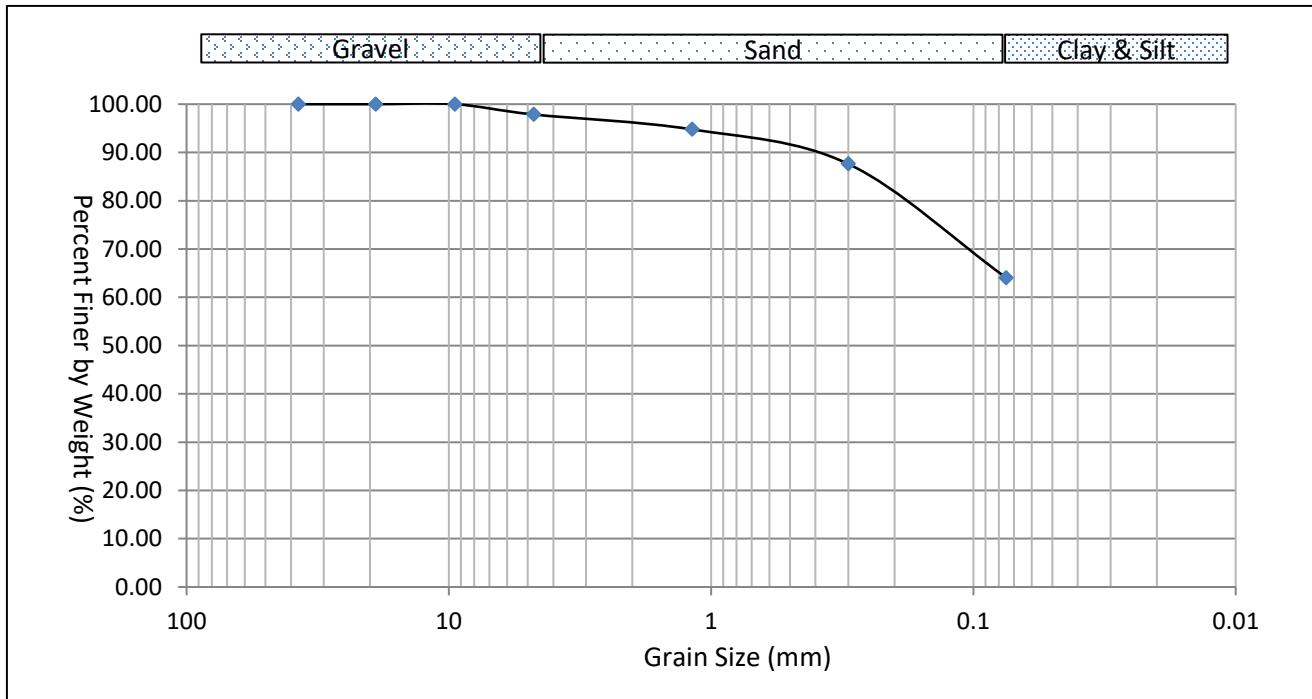

Grain Size Distribution

Sample ID: 25-107 BH103 SS7 (6.1-6.56m)

Gravel: 4.5%

Sand: 49.5%

Clay and Silt 46%

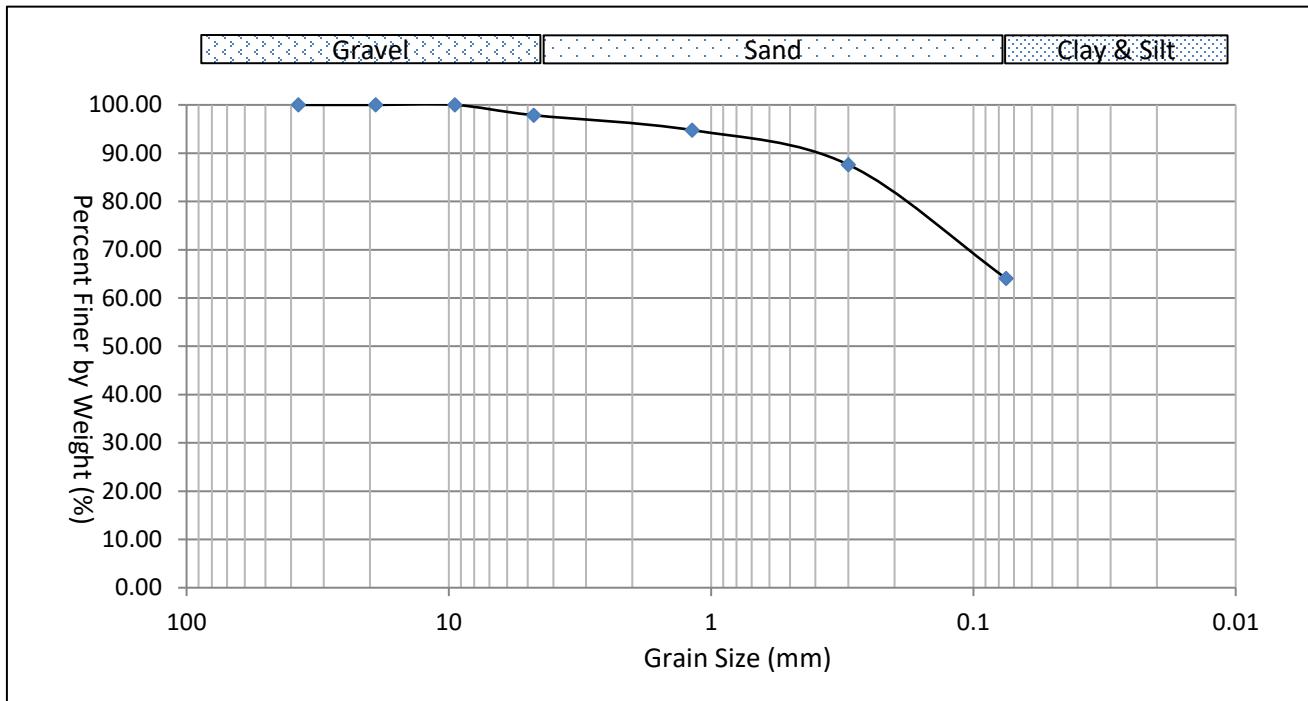

Grain Size Distribution

Sample ID: 25-108 BH103 SS9 (9.15-9.61m)

Gravel: 1.4%

Sand: 40.7%

Clay and Silt 58%

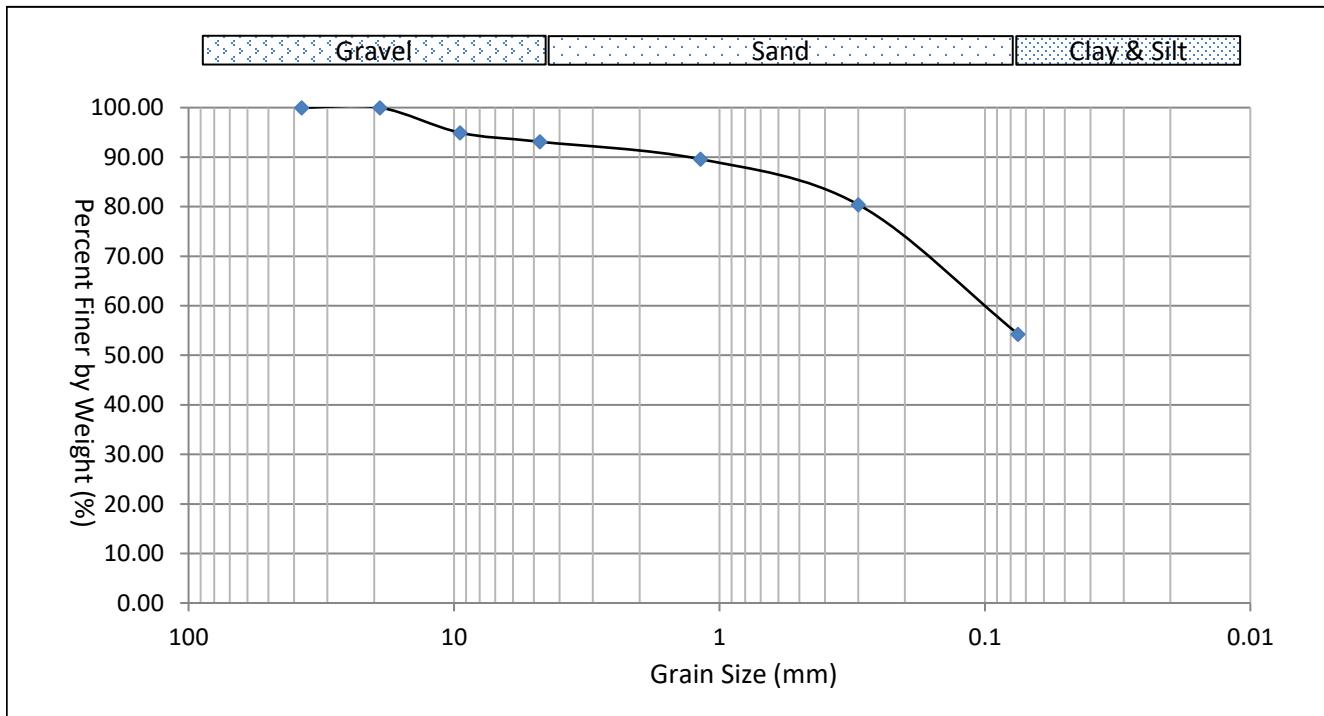

Grain Size Distribution

Sample ID: 25-109 BH103 SS11 (12.2-12.66m)

Gravel: 2.1%

Sand: 33.8%

Clay and Silt 64%

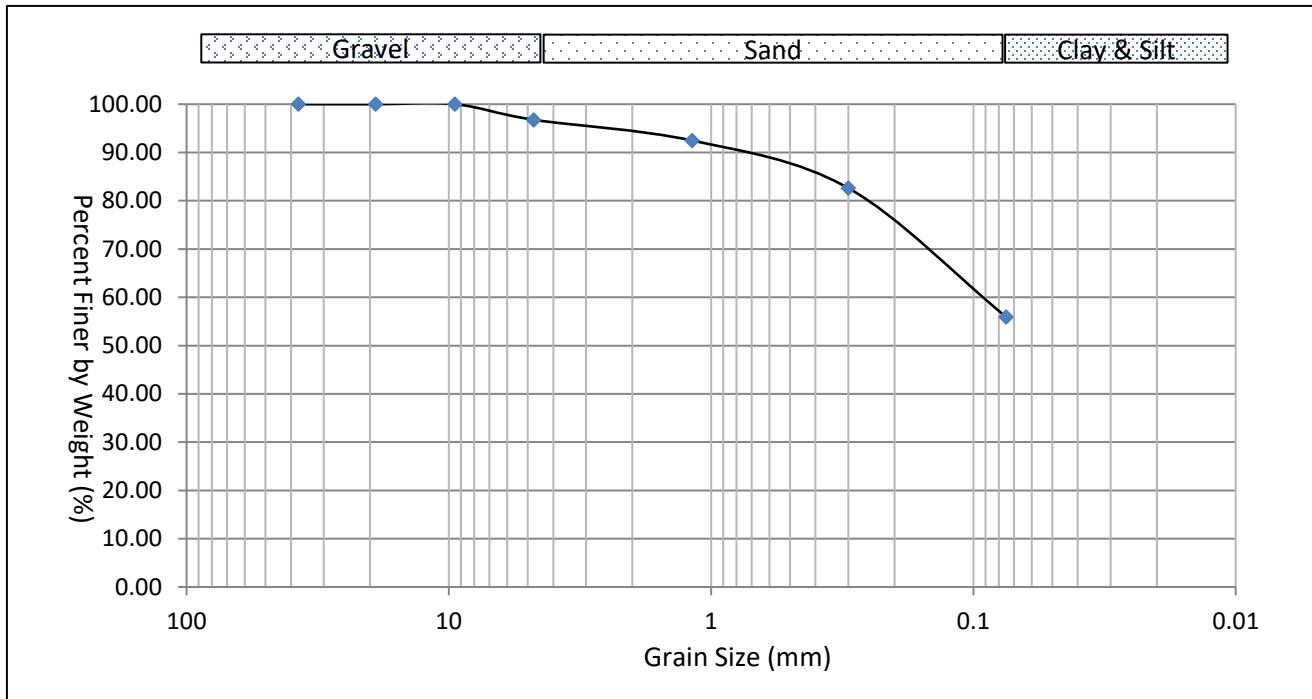

Grain Size Distribution

Sample ID: 25-112 BH105 SS9 (9.15-9.61m)

Gravel: 6.9%

Sand: 38.8%

Clay and Silt 54.3%

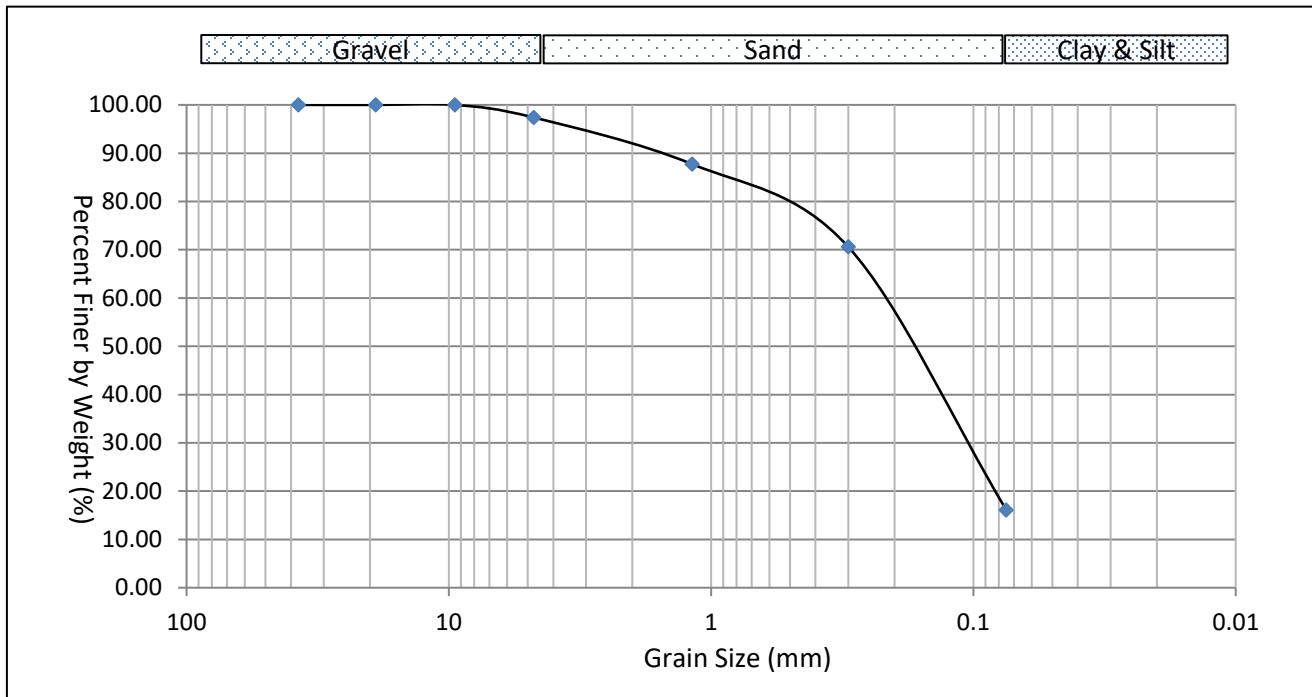

Grain Size Distribution

Sample ID: 25-113 BH105 SS11 (12.2-12.66m)

Gravel: 3.2%

Sand: 40.8%

Clay and Silt 55.9%

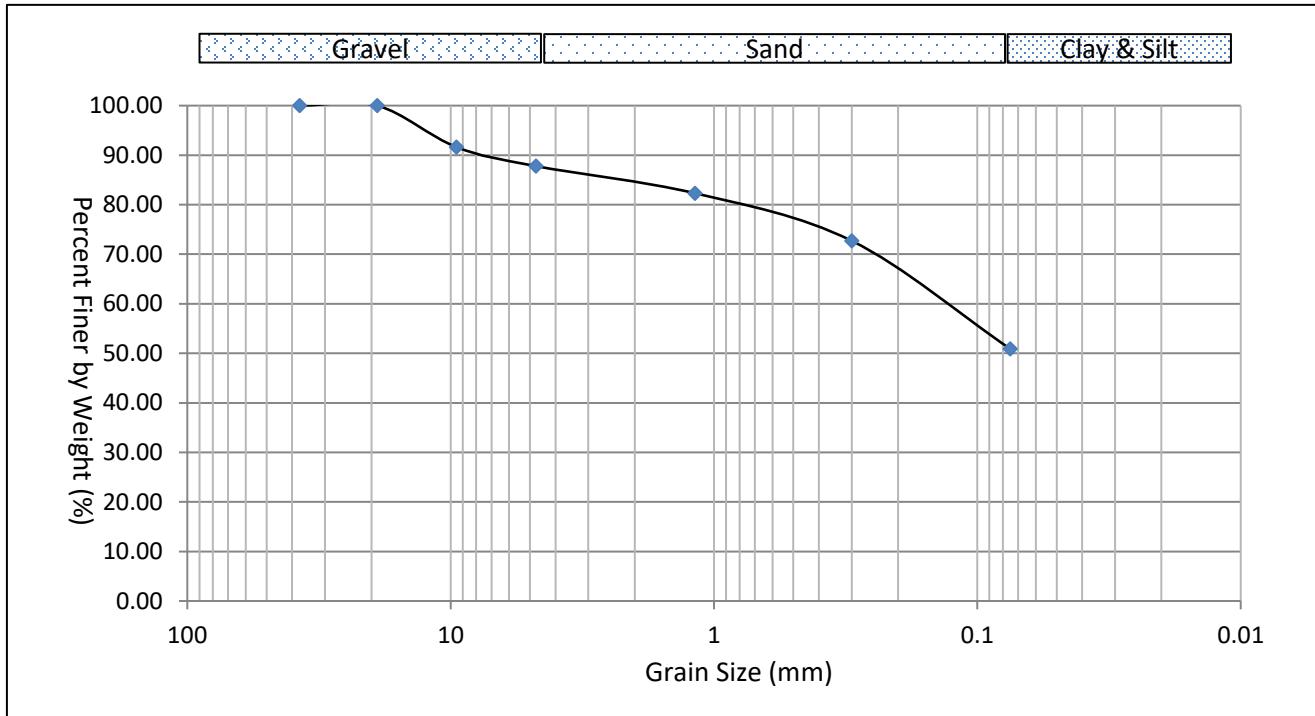

Grain Size Distribution

Sample ID: 25-114 BH105 SS13 (15.25-15.71m)

Gravel: 2.6%

Sand: 81.3%

Clay and Silt 16.1%

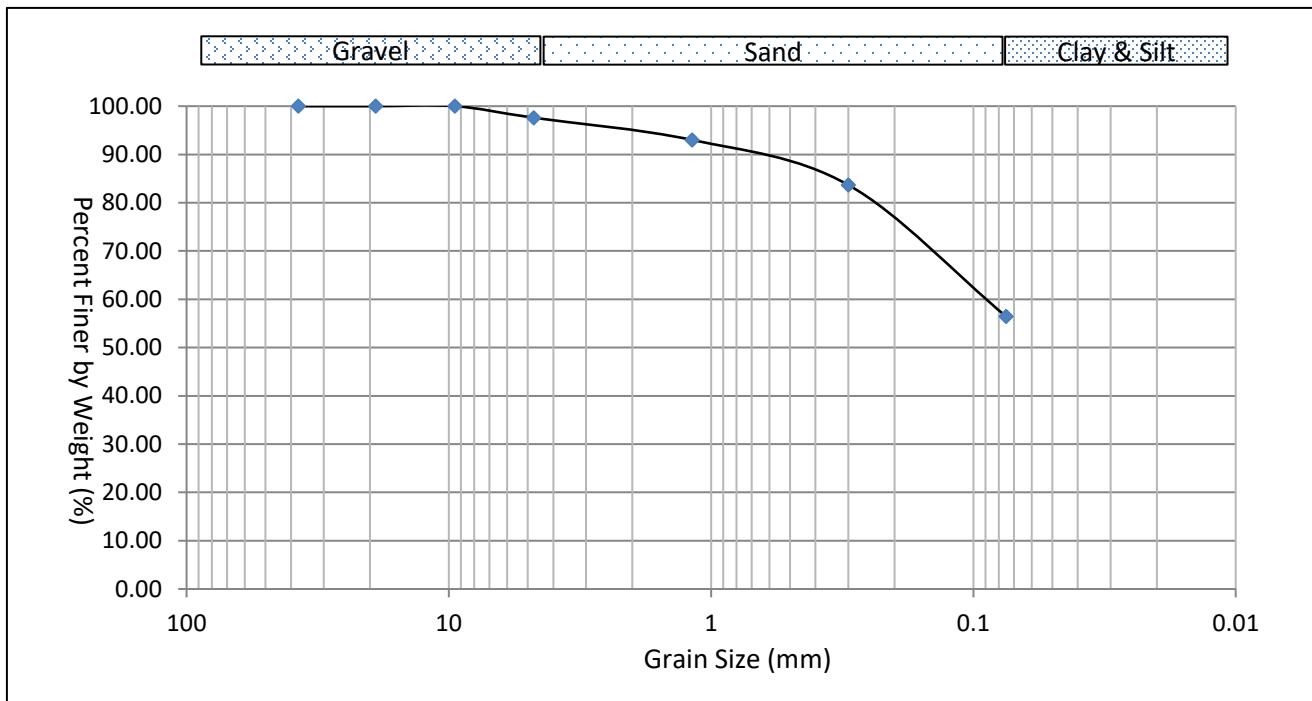

Grain Size Distribution

Sample ID: 25-116 BH107 SS7 (6.1-6.56m)

Gravel: 12.2%

Sand: 36.9%

Clay and Silt 50.9%

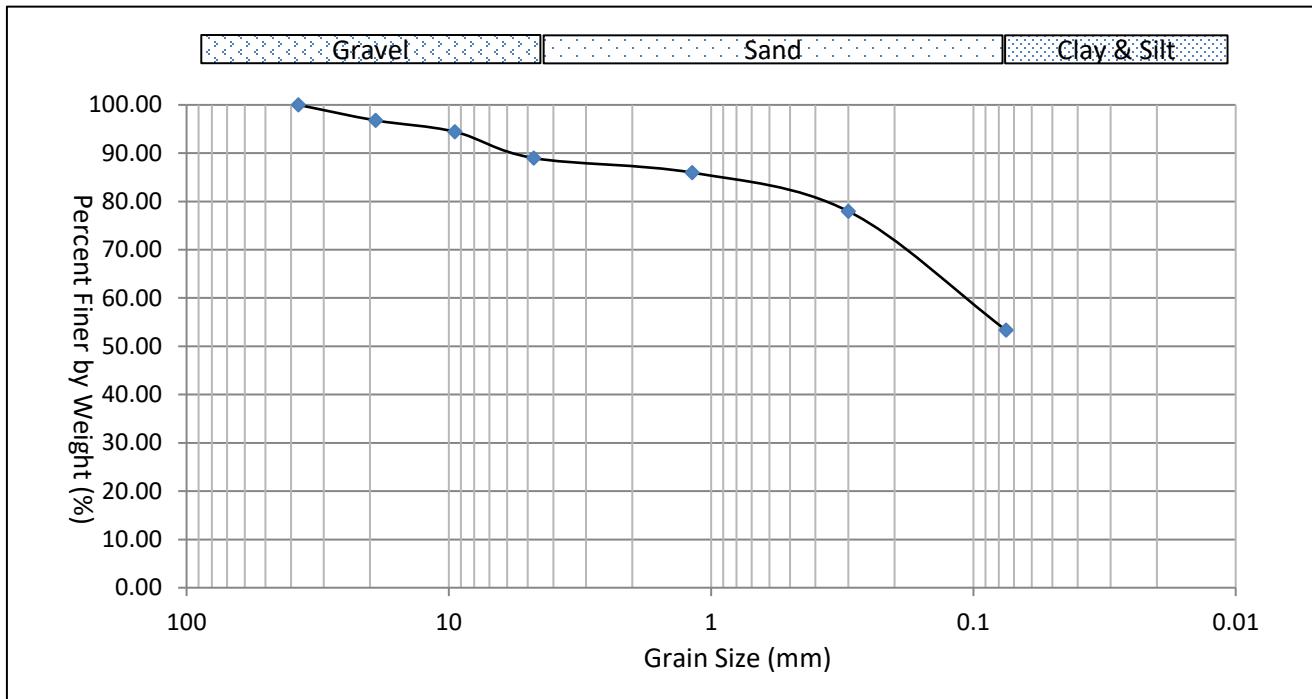

Grain Size Distribution

Sample ID: 25-117 BH107 SS9 (9.15-9.61m)

Gravel: 2.4%

Sand: 41.2%

Clay and Silt 56.4%

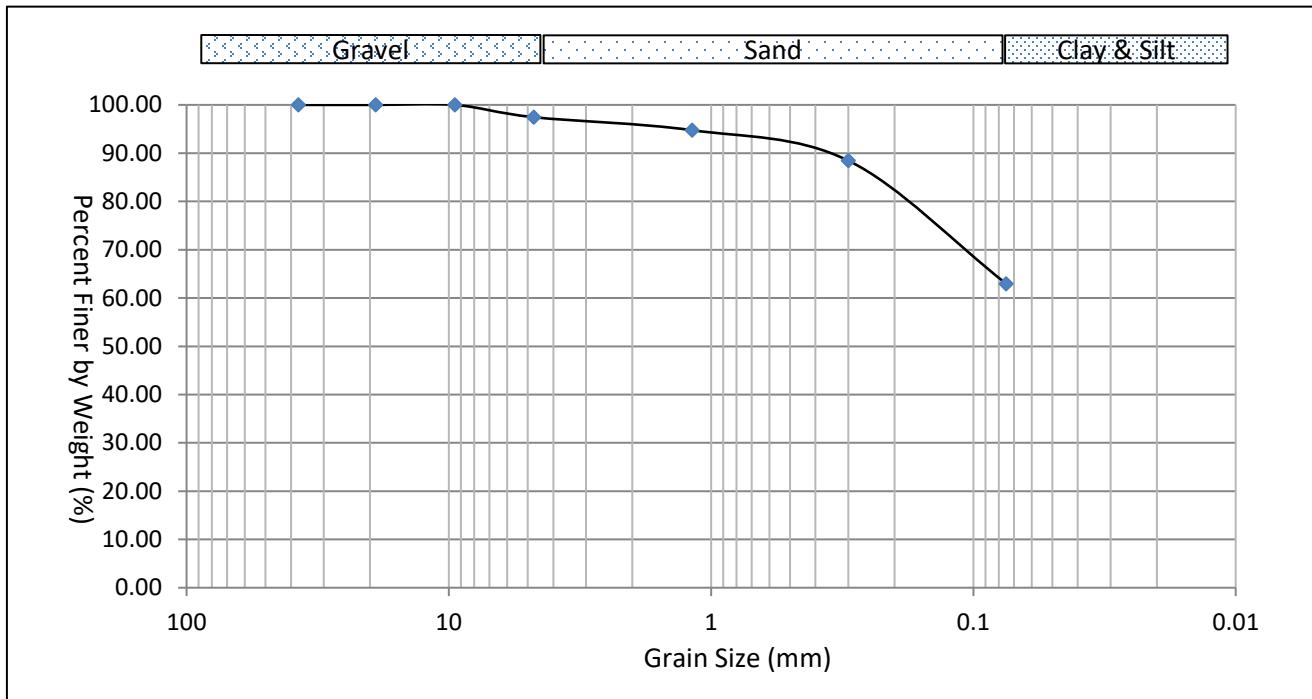

Grain Size Distribution

Sample ID: 25-118 BH107 SS11 (12.2-12.66m)

Gravel: 11%

Sand: 35.7%

Clay and Silt 53.3%

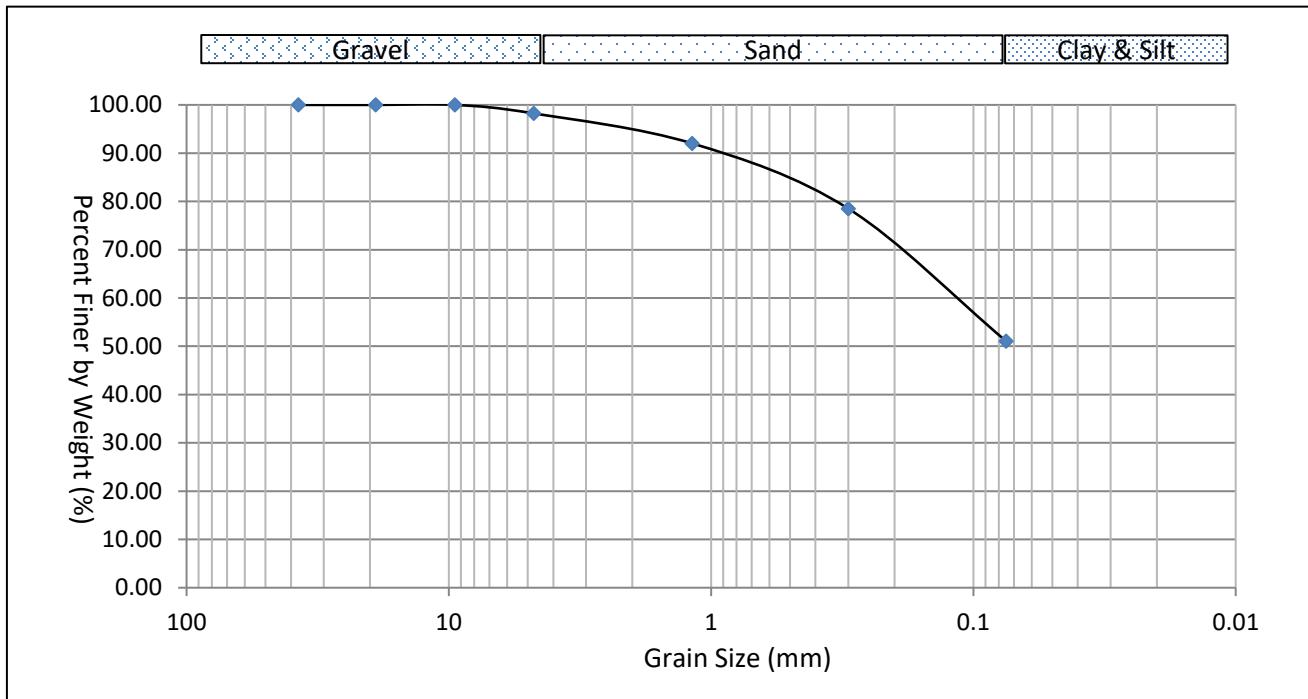

Grain Size Distribution

Sample ID: 25-119 BH107 SS13 (15.25-15.71m)

Gravel: 2.5%

Sand: 34.5%

Clay and Silt 63%

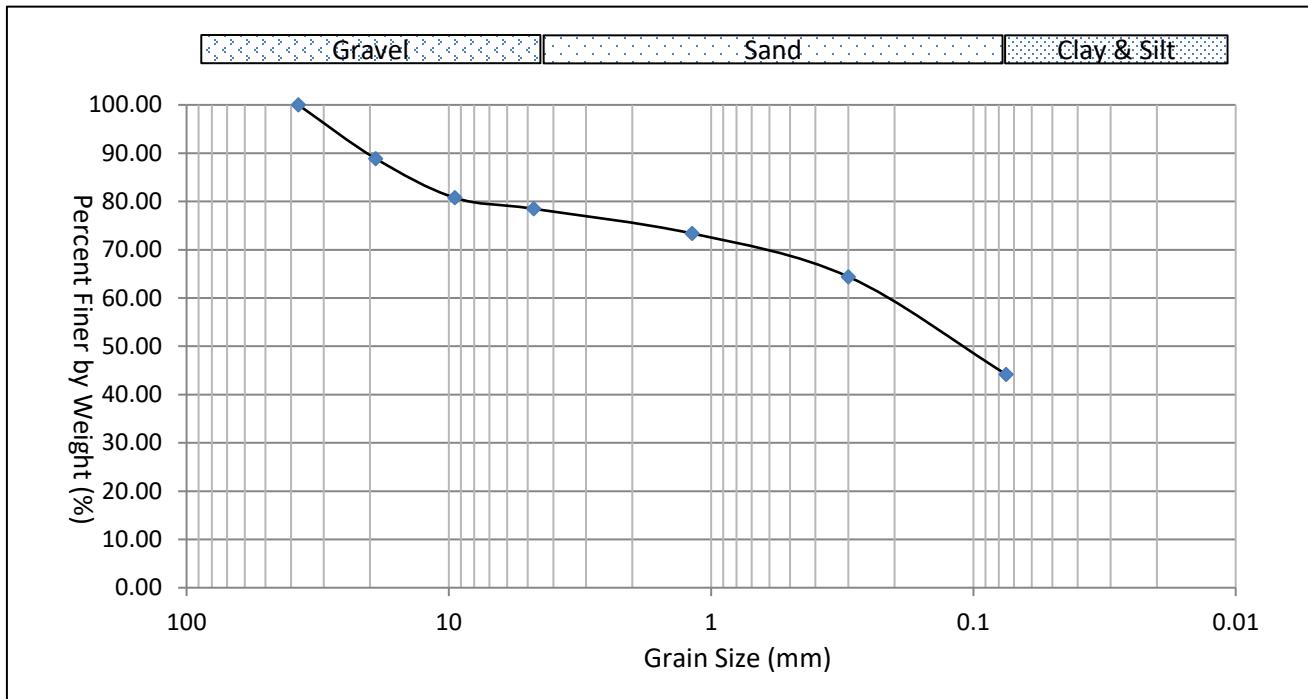

Grain Size Distribution

Sample ID: 25-120 BH108 SS5 (3.05-3.51m)

Gravel: 1.8%

Sand: 47.2%

Clay and Silt 51.1%

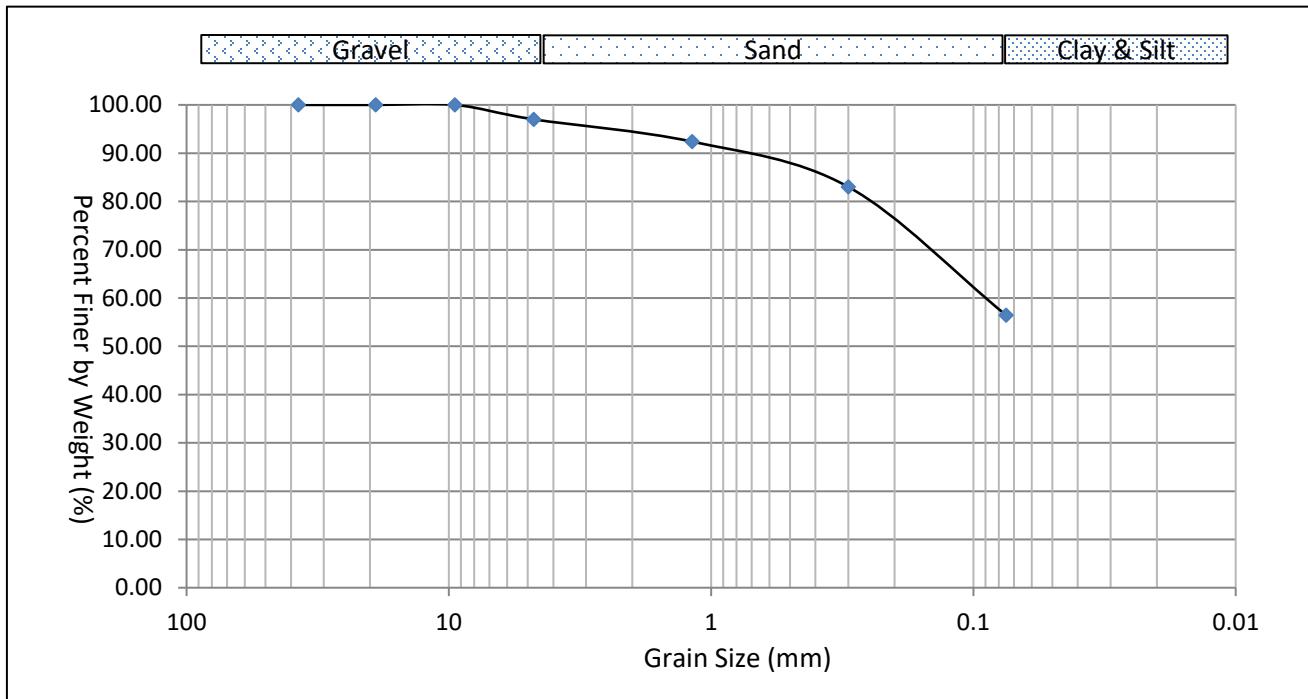

Grain Size Distribution

Sample ID: 25-121 BH108 SS7 (6.1-6.56m)

Gravel: 21.5%

Sand: 34.3%

Clay and Silt 44.2%

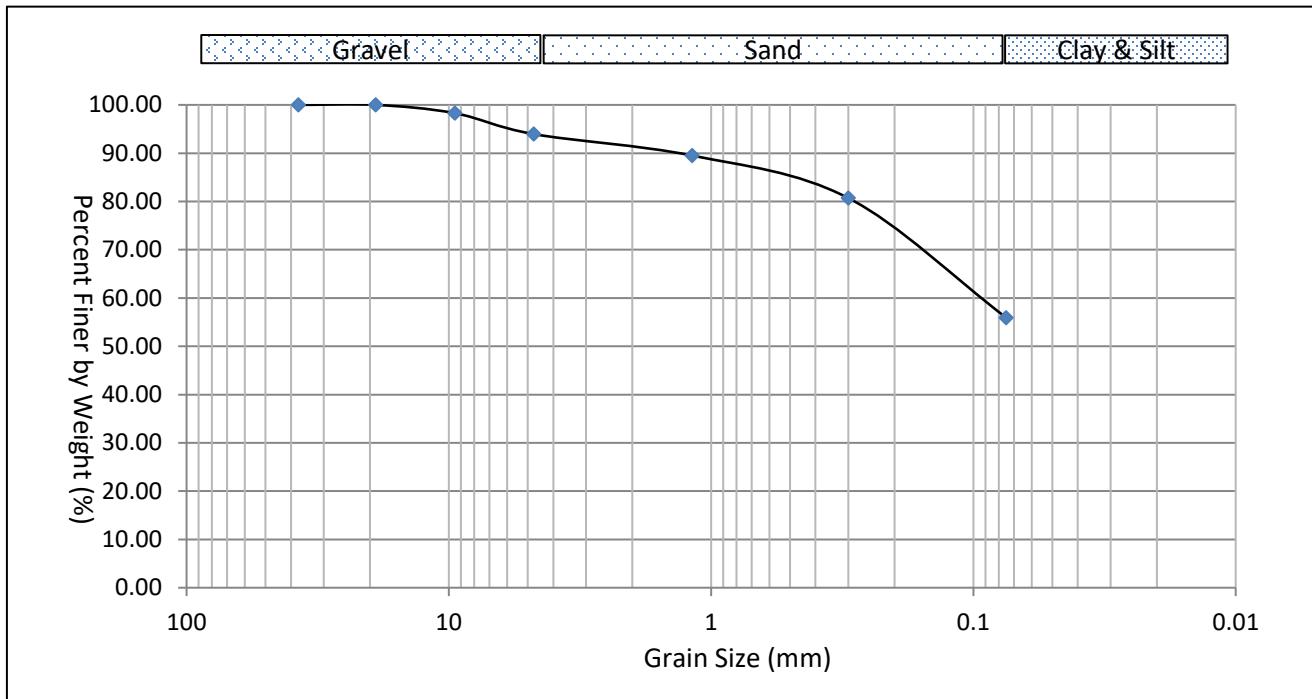

Grain Size Distribution

Sample ID: 25-122 BH108 SS9 (9.15-9.61m)

Gravel: 3%

Sand: 40.6%

Clay and Silt 56.4%

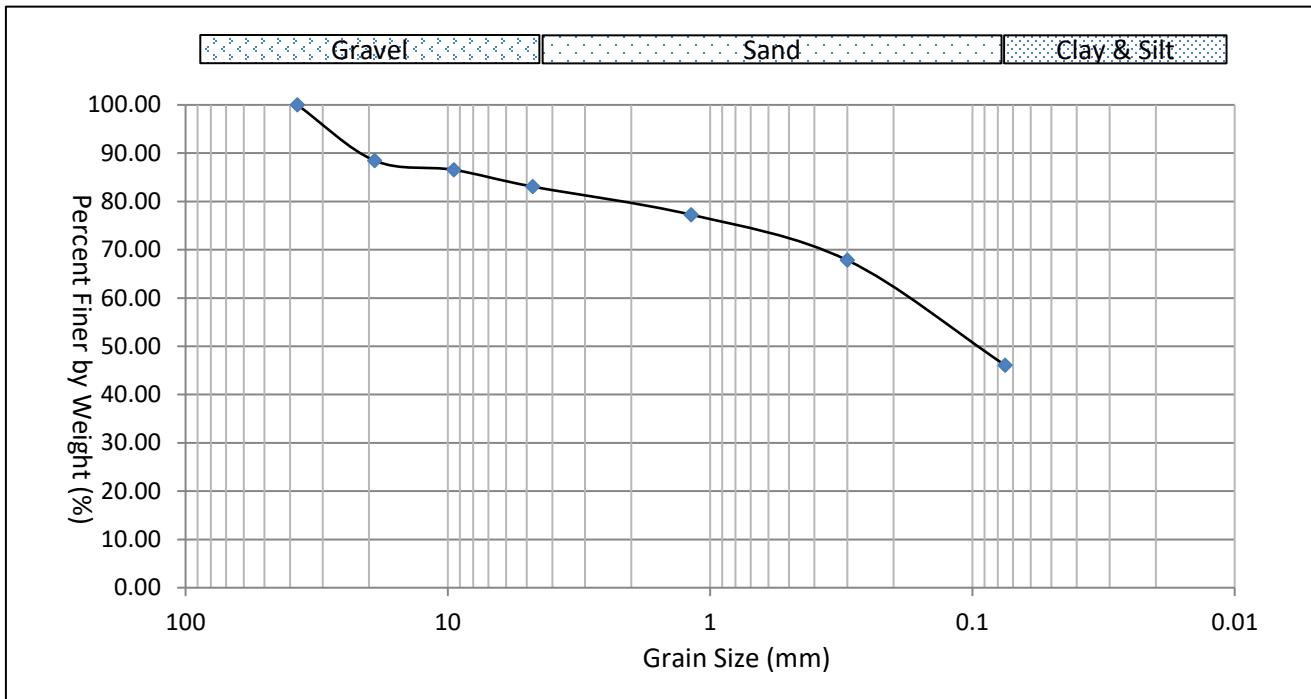

Grain Size Distribution

Sample ID: 25-123 BH108 SS11 (12.2-12.66m)

Gravel: 6.1%

Sand: 38%

Clay and Silt 55.9%

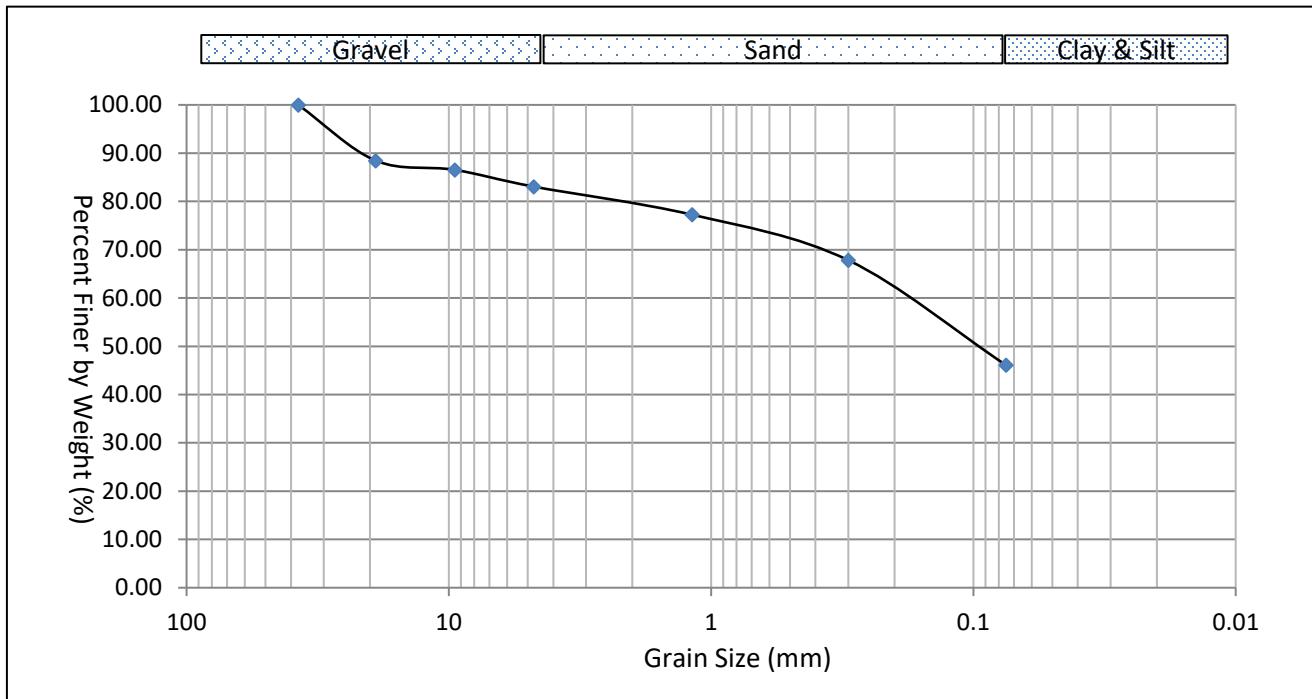

Grain Size Distribution

Sample ID: 25-124 BH110 SS5 (3.05-3.51m)

Gravel: 16.9%

Sand: 37%

Clay and Silt 46.1%

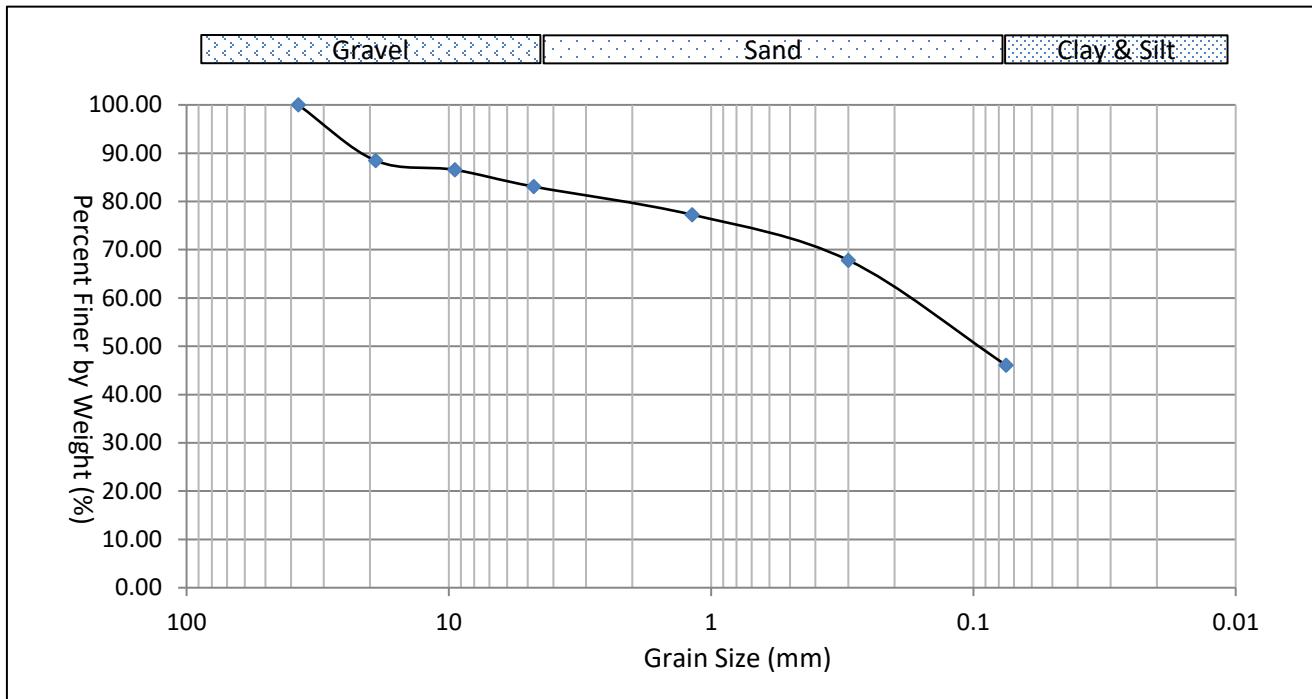

Grain Size Distribution

Sample ID: 25-125 BH110 SS7 (6.1-6.56m)

Gravel: 5.6%

Sand: 38.5%

Clay and Silt 55.8%

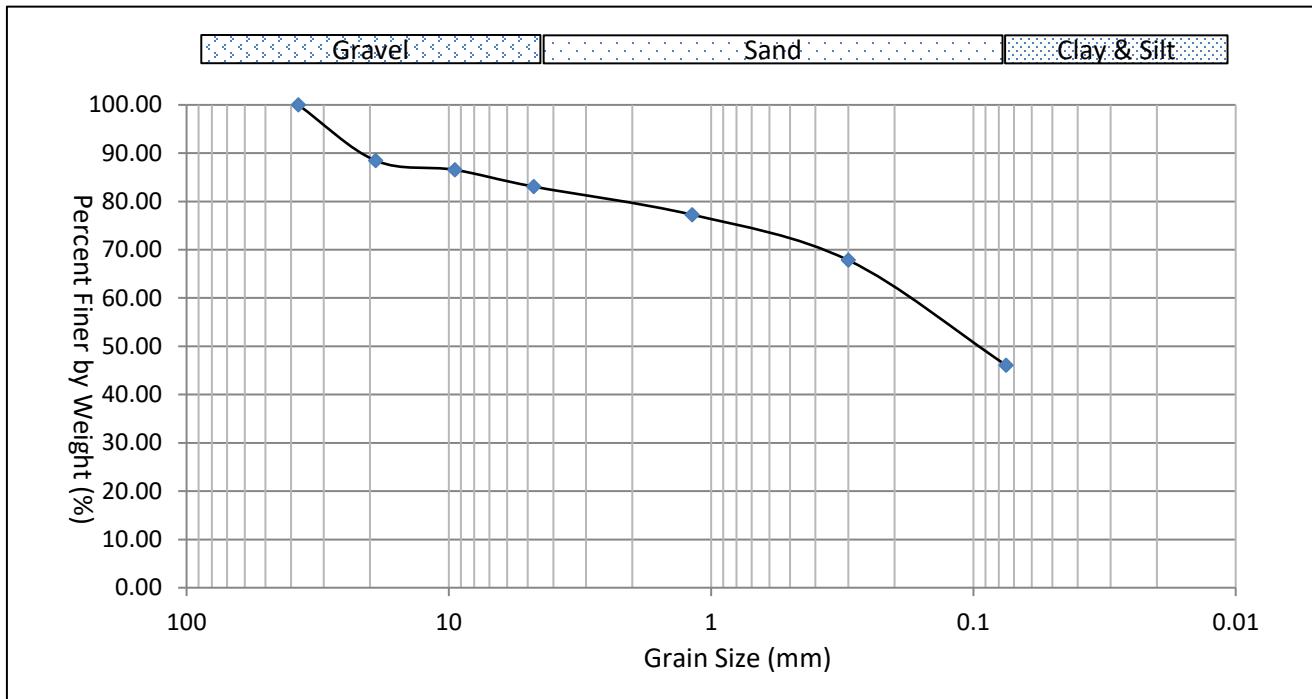

Grain Size Distribution

Sample ID: 25-126 BH110 SS9 (9.15-9.61m)

Gravel: 2.3%

Sand: 39.8%

Clay and Silt 57.9%


Grain Size Distribution

Sample ID: 25-127 BH110 SS11 (12.2-12.66m)

Gravel: 1.6%

Sand: 36.6%

Clay and Silt 61.8%

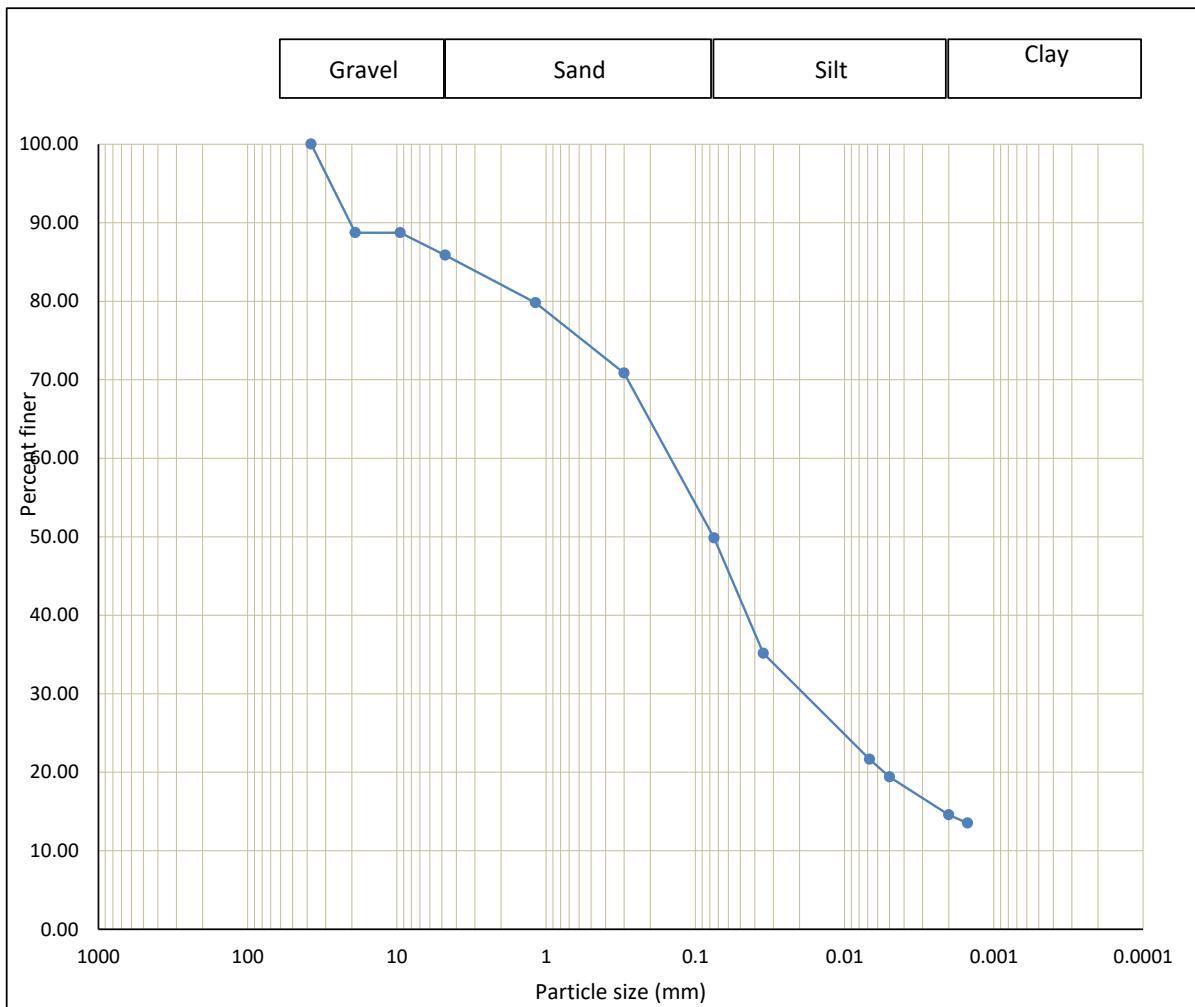
Certificate of Analysis

Analysis Requested:	Grain Size (Hydrometer)
Sample Description:	7 Soil Sample(s)

Sample Info	25-102 <i>BH101 SS5</i>	25-103 <i>BH101 SS7</i>	25-110 <i>BH105 SS5</i>	25-111 <i>BH105 SS7</i>	25-154 <i>BH106 SS5</i>	25-155 <i>BH106 SS6</i>
Sample Depth (m)	3.05-3.51	6.1-6.56	3.05-3.51	6.1-6.56	3.05-3.51	4.58-5.03
Grain Size (%)						
>19mm	11.3	0.0	0.0	0.0	0.0	0.0
9.5mm-19mm	0.0	4.2	1.2	3.7	0.0	0.9
4.75mm-9.5mm	2.9	1.4	3.5	4.6	0.9	4.7
1.18mm-4.75mm	6.0	3.7	6.0	4.0	1.6	6.4
300um-1.18mm	9.0	8.8	8.2	9.6	3.7	12.3
75um-300um	21.0	24.7	18.4	24.4	21.0	25.8
5um-75um	30.5	36.3	33.8	29.3	46.8	25.9
2um-5um	4.8	3.7	7.3	6.1	6.5	6.1
<2um	14.6	17.1	21.6	18.3	19.5	17.9
Clay	14.6	17.1	21.6	18.3	19.5	17.9
Silt	35.3	40.0	41.2	35.5	53.3	32.0
Sand	36.0	37.2	32.6	38.0	26.3	44.5
Gravel	14.1	5.6	4.6	8.3	0.9	5.6

Sample Info	25-115 <i>BH107 SS5</i>					
Sample Depth (m)	3.05-3.51					
Grain Size (%)						
>19mm	12.2					
9.5mm-19mm	1.4					
4.75mm-9.5mm	2.2					
1.18mm-4.75mm	4.3					
300um-1.18mm	7.9					
75um-300um	18.6					
5um-75um	30.5					
2um-5um	5.6					
<2um	17.4					
Clay	17.4					
Silt	36.1					
Sand	30.7					
Gravel	15.8					

Grain Size Distribution


Sample ID: 25-102 BH101 SS5 (3.05-3.51m)

Gravel: 14.1%

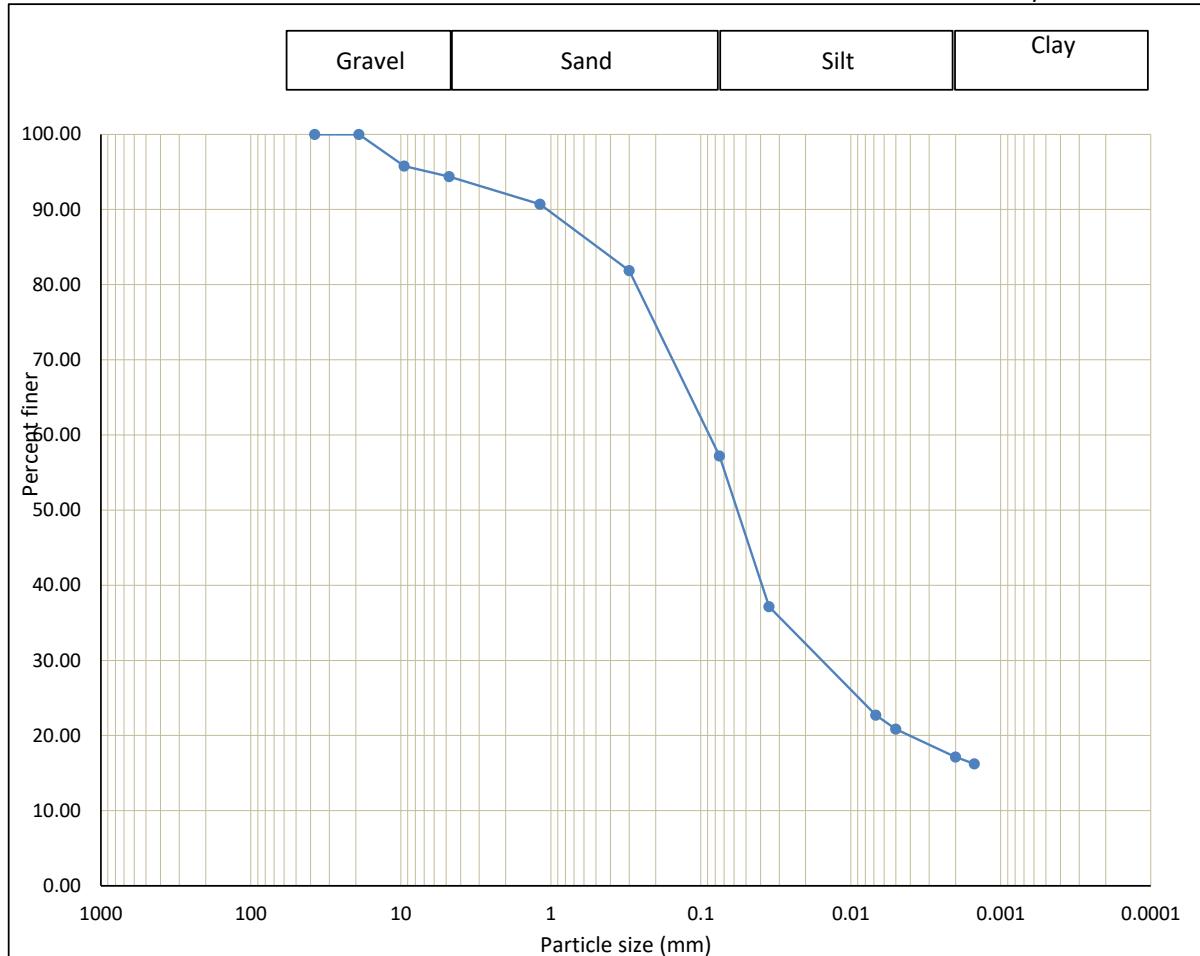
Sand: 36%

Silt: 35.3%

Clay: 14.6%

Sample ID: 25-102 BH101 SS5 (3.05-3.51m)		
Diameter	Weight (%)	Grain Size
>4.75mm	14.1	Gravel
1.18mm-4.75mm	6.0	Coarse Sand
300um-1.18mm	9.0	Medium Sand
75um-300um	21.0	Fine Sand
5um-75um	30.5	Silt
2um-5um	4.8	
<2um	14.6	Clay

Grain Size Distribution


Sample ID: 25-103 BH101 SS7 (6.1-6.56m)

Gravel: 5.6%

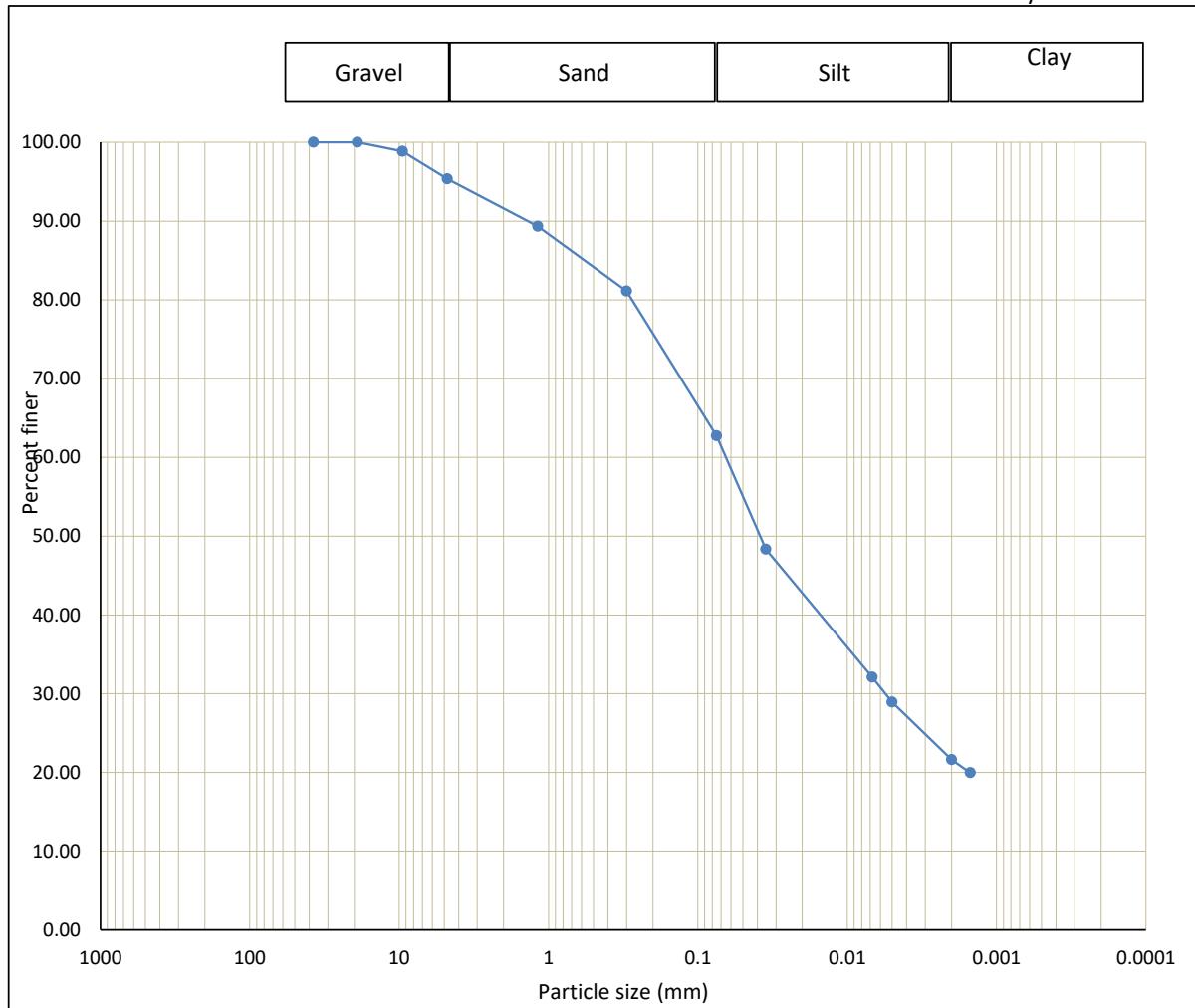
Sand: 37.2%

Silt: 40%

Clay: 17.1%

Sample ID: 25-103 BH101 SS7 (6.1-6.56m)		
Diameter	Weight (%)	Grain Size
>4.75mm	5.6	Gravel
1.18mm-4.75mm	3.7	Coarse Sand
300um-1.18mm	8.8	Medium Sand
75um-300um	24.7	Fine Sand
5um-75um	36.3	Silt
2um-5um	3.7	
<2um	17.1	Clay

Grain Size Distribution


Sample ID: 25-110 BH105 SS5 (3.05-3.51m)

Gravel: 4.6%

Sand: 32.6%

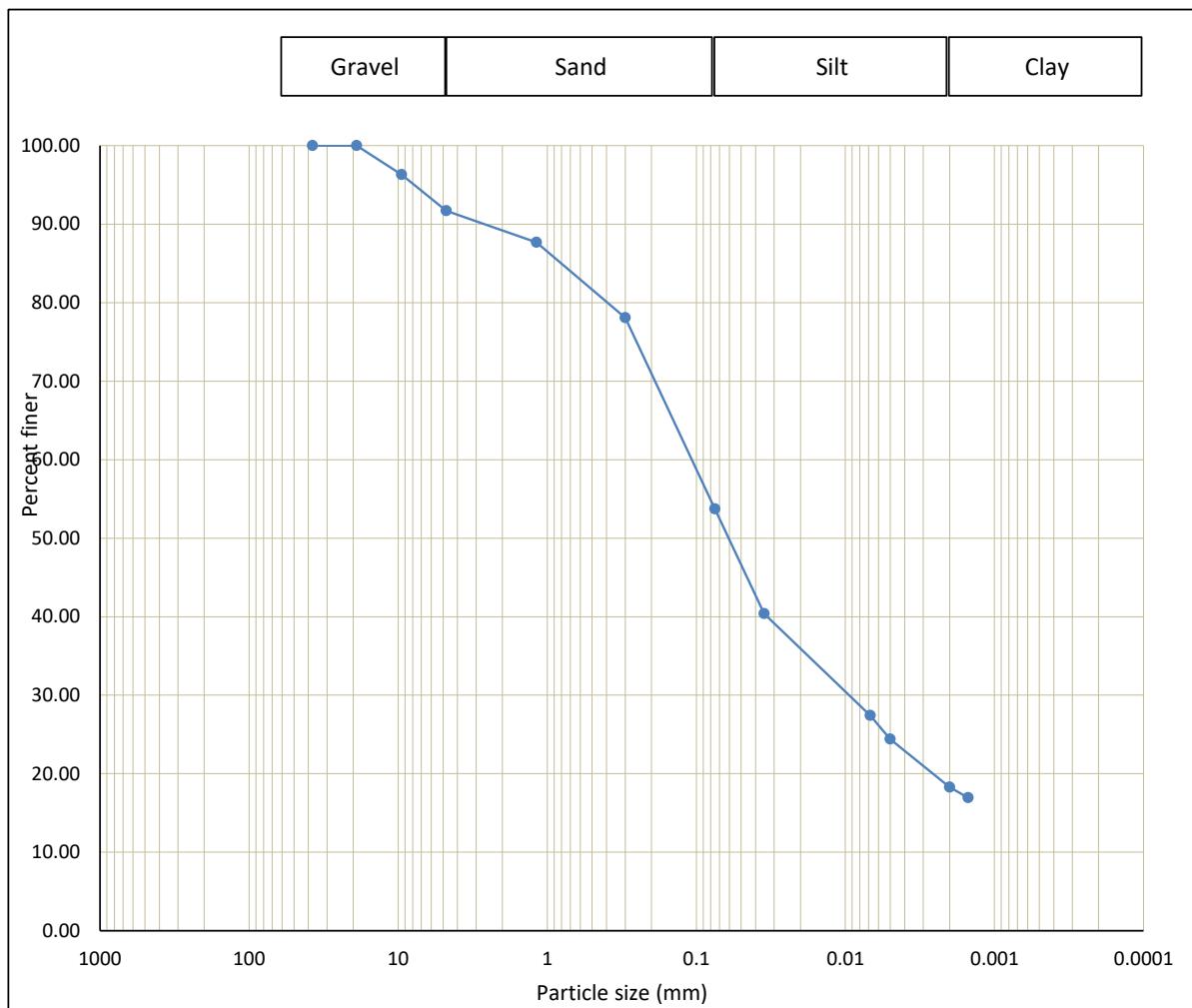
Silt: 41.2%

Clay: 21.6%

Sample ID: 25-110 BH105 SS5 (3.05-3.51m)

Diameter	Weight (%)	Grain Size
>4.75mm	4.6	Gravel
1.18mm-4.75mm	6.0	Coarse Sand
300um-1.18mm	8.2	Medium Sand
75um-300um	18.4	Fine Sand
5um-75um	33.8	Silt
2um-5um	7.3	
<2um	21.6	Clay

Grain Size Distribution


Sample ID: 25-111 BH105 SS7 (6.1-6.56m)

Gravel: 8.3%

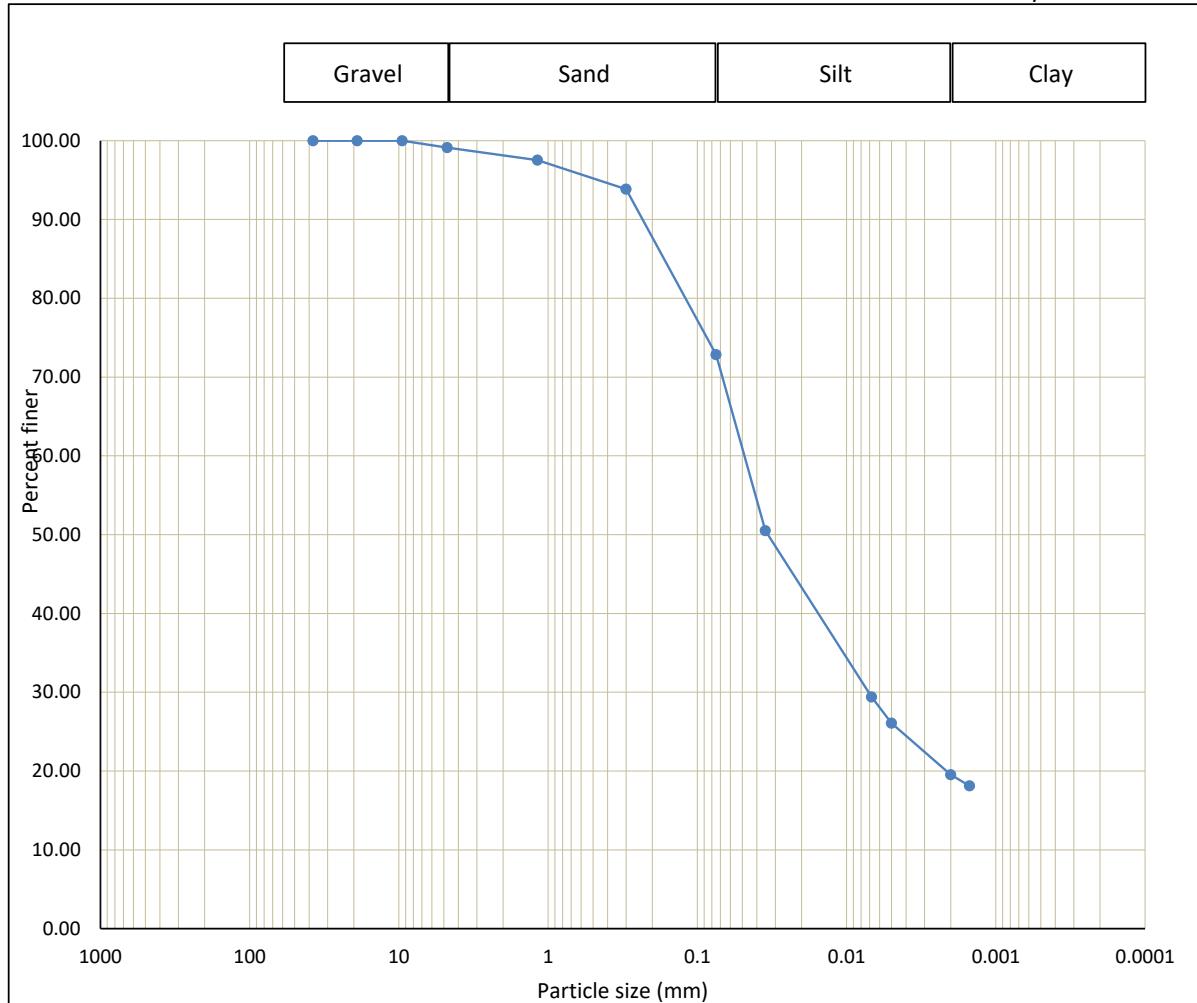
Sand: 38%

Silt: 35.5%

Clay: 18.3%

Sample ID: 25-111 BH105 SS7 (6.1-6.56m)		
Diameter	Weight (%)	Grain Size
>4.75mm	8.3	Gravel
1.18mm-4.75mm	4.0	Coarse Sand
300um-1.18mm	9.6	Medium Sand
75um-300um	24.4	Fine Sand
5um-75um	29.3	Silt
2um-5um	6.1	
<2um	18.3	Clay

Grain Size Distribution


Sample ID: 25-154 BH106 SS5 (3.05-3.51m)

Gravel: 0.9%

Sand: 26.3%

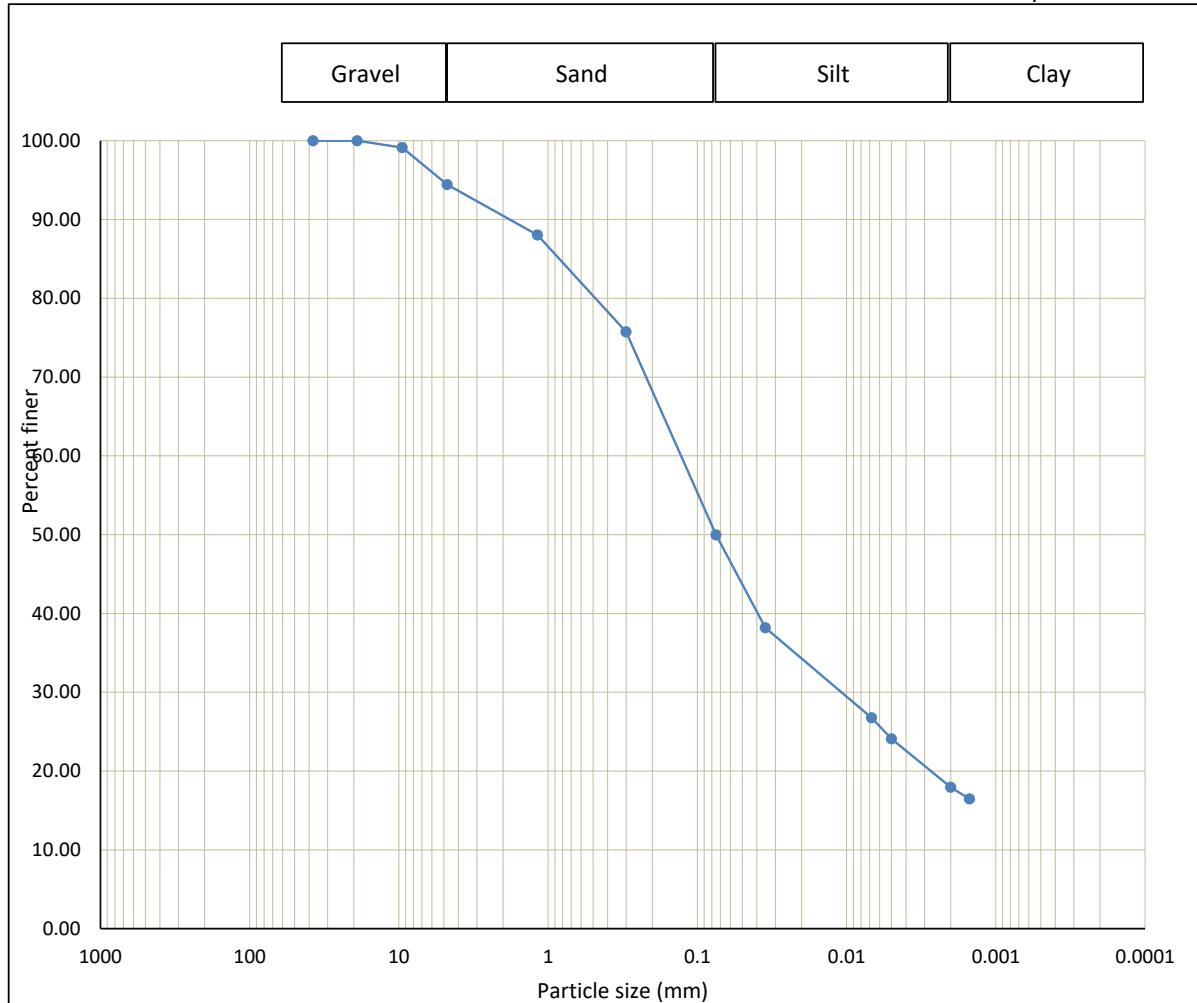
Silt: 53.3%

Clay: 19.5%

Sample ID: 25-154 BH106 SS5 (3.05-3.51m)

Diameter	Weight (%)	Grain Size
>4.75mm	0.9	Gravel
1.18mm-4.75mm	1.6	Coarse Sand
300um-1.18mm	3.7	Medium Sand
75um-300um	21.0	Fine Sand
5um-75um	46.8	Silt
2um-5um	6.5	
<2um	19.5	Clay

Grain Size Distribution


Sample ID: 25-155 BH106 SS6 (4.58-5.03m)

Gravel: 5.6%

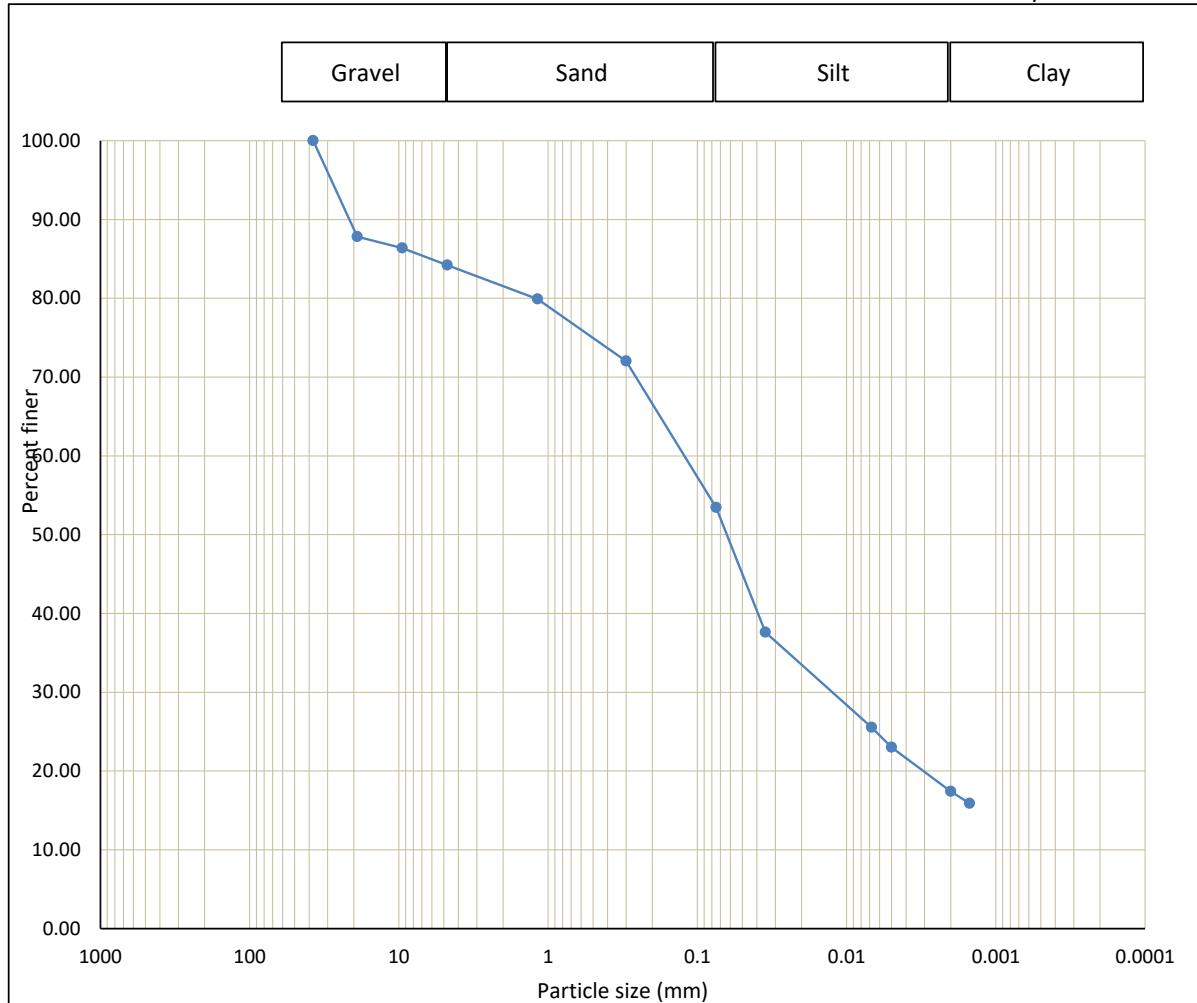
Sand: 44.5%

Silt: 32%

Clay: 17.9%

Sample ID: 25-155 BH106 SS6 (4.58-5.03m)		
Diameter	Weight (%)	Grain Size
>4.75mm	5.6	Gravel
1.18mm-4.75mm	6.4	Coarse Sand
300um-1.18mm	12.3	Medium Sand
75um-300um	25.8	Fine Sand
5um-75um	25.9	Silt
2um-5um	6.1	
<2um	17.9	Clay

Grain Size Distribution


Sample ID: 25-115 BH107 SS5 (3.05-3.51m)

Gravel: 15.8%

Sand: 30.7%

Silt: 36.1%

Clay: 17.4%

Sample ID: 25-115 BH107 SS5 (3.05-3.51m)		
Diameter	Weight (%)	Grain Size
>4.75mm	15.8	Gravel
1.18mm-4.75mm	4.3	Coarse Sand
300um-1.18mm	7.9	Medium Sand
75um-300um	18.6	Fine Sand
5um-75um	30.5	Silt
2um-5um	5.6	
<2um	17.4	Clay

LAB JOB No: 25-101	Standard Laboratory Request Form: Chain of Custody								Page 1 of 1					
CLIENT INFORMATION			PROJECT INFORMATION					BILLING INFORMATION						
Name: Contact: Address: Email: Fax: Phone:	Project Name: Geotechnical Investigator Project ID: 24-14410 Sampled By: David					Purchase Order No: Verbal Authorization: Credit Card Type (e.g. MC/Visa/AMEX...):								
375-417 Kingston Rd Pickering			TURNAROUND TIME (TAT) Check ONE if all samples are the same/or see below.					Credit Card #: Expiry Date:						
			STD - Standard (5-7 bus. days)	<input checked="" type="checkbox"/> Standard Charge		SURCHARGES MAY APPLY Custom quotations (if applicable) will be reflected on final billing. CALL for: Emergencies, Bulk Quotes, or other Questions.			Reg. Business Hrs. 9am to 5pm Samples received after 2pm are considered next day orders.					
LAB SAMPLE ID	CLIENT'S SAMPLE ID AND DESCRIPTION	SAMPLING DATE/TIME	SAMPLE MATRIX	CONTAINER NO. and TYPE	TAT (Above)	ANALYSIS REQUESTED (Check or Specify)							NOTES	
						Moisture Content	Sieve Analysis	Hydrometer	Atterberg Limits	Proctor				
Relinquished by: Name: (print) Signature: Date & Time: Method of Shipment:	Client's Comments: BH1 & BH3 & BH5 & BH7 & BH8 & BH10 (5-6.5') (10-11.5') (15-16.5') (20-21.5') (25-26.5') (30-31.5') (35-36.5') (40-41.5') (45-46.5') (50-51.5') (55-56.5') (60-61.5') (65-66.5') (70-71.5')					Regulatory Requirements: <input checked="" type="checkbox"/> OPSS Reg.								
Received by (Internal): Name: Date & Time:	Arrival Temperature °C: Laboratory Remarks:					Purpose for sampling: Road Base Road Subbase Subgrade Backfill								
						Engineering Fill Soil Classification Other								

APPENDIX D – SEWER BYLAW RESULTS

F i s h e r E n g i n e e r i n g L i m i t e d

Project No. FH24-14411_V2 March 7, 2025

CERTIFICATE OF ANALYSIS (GUIDELINE EVALUATION)

Work Order	WT2500943	Page	1 of 6
Client	Fisher Engineering Limited	Laboratory	ALS Environmental - Waterloo
Contact	Clive Wiggan	Account Manager	Emily Hansen
Address	15-400 Esna Park Drive Markham ON Canada L3R 3K2	Address	60 Northland Road, Unit 1 Waterloo, Ontario Canada N2V 2B8
Telephone	905 475 7755, Ext. 29	Telephone	+1 519 886 6910
Project	24-14410	Date Samples Received	16-Jan-2025 15:29
PO	----	Date Analysis Commenced	18-Jan-2025
C-O-C number	23-1105097	Issue Date	28-Jan-2025 15:34
Sampler	NNAMDI		
Site	----		
Quote number	ALS 2025 STANDING OFFER		
No. of samples received	1		
No. of samples analysed	1		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Guideline Comparison

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Danielle Gravel	Supervisor - Semi-Volatile Instrumentation	Organics, Waterloo, Ontario
Hannah Lewis	Inorganics Analyst	Inorganics, Waterloo, Ontario
Jeminikumari Patel	Analyst	Microbiology, Waterloo, Ontario
Manuel TavaraTello	Supervisor - Semi-Volatile Extractions	Organics, Waterloo, Ontario
Nik Perkio	Senior Analyst	Inorganics, Waterloo, Ontario
Nik Perkio	Senior Analyst	Metals, Waterloo, Ontario
Sanja Risticevic	Department Manager - LCMS	LCMS, Waterloo, Ontario
Sarah Birch	VOC Section Supervisor	VOC, Waterloo, Ontario
Walt Kippenhuck	Supervisor - Inorganic	Inorganics, Waterloo, Ontario

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guidelines are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Key : LOR: Limit of Reporting (detection limit).

Unit	Description
µg/L	micrograms per litre
CFU/100mL	colony forming units per hundred millilitres
mg/L	milligrams per litre
pH units	pH units

>: greater than.

<: less than.

Red shading is applied where the result or the LOR is greater than the Guideline Upper Limit (or lower than the Guideline Lower Limit, if applicable).

For drinking water samples, Red shading is applied where the result for E.coli, fecal or total coliforms is greater than or equal to the Guideline Upper Limit .

Workorder Comments

WT2500943-001 - RRR: Detection limit for bis(2-Ethylhexyl) phthalate raised due to biased low analyte response in continuing calibration standard.

Qualifiers

Qualifier	Description
DLHC	<i>Detection Limit Raised: Dilution required due to high concentration of test analyte(s).</i>
DLM	<i>Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).</i>
HTD	<i>Hold time exceeded for re-analysis or dilution, but initial testing was conducted within hold time.</i>
PEHT	<i>Parameter exceeded recommended holding time prior to analysis.</i>
RRR	<i>Refer to report comments for issues regarding this analysis.</i>

Analytical Results

Analyte	Method/Lab	LOR	Unit	WT2500943-001	MW104 (UNFILTERED)								
					Sampling date/time	16-Jan-2025 00:00	DURSUB SAN	DURSUB STM	--	--	--	--	--
Physical Tests													
pH	E108/WT	0.10	pH units	8.24		6 - 10.5 pH units	6 - 9 pH units	--	--	--	--	--	--
Solids, total suspended [TSS]	E160/WT	3.0	mg/L	77.7		350 mg/L	15 mg/L	--	--	--	--	--	--
Anions and Nutrients													
Fluoride	E235.F/WT	0.020	mg/L	0.822	DLM	10 mg/L	--	--	--	--	--	--	--
Kjeldahl nitrogen, total [TKN]	E318/WT	0.050	mg/L	0.594		100 mg/L	1 mg/L	--	--	--	--	--	--
Phosphorus, total	E372-U/WT	0.0020	mg/L	0.220		10 mg/L	0.4 mg/L	--	--	--	--	--	--
Sulfate (as SO4)	E235.SO4/WT	0.30	mg/L	90.8	DLM	1500 mg/L	--	--	--	--	--	--	--
Cyanides													
Cyanide, strong acid dissociable (Total)	E333/WT	0.0020	mg/L	<0.0020		2 mg/L	0.02 mg/L	--	--	--	--	--	--
Microbiological Tests													
Coliforms, Escherichia coli [E. coli]	E012A.EC/WT	1	CFU/100mL	<2	DLM PEHT	--	200 CFU/100mL	--	--	--	--	--	--
Total Metals													
Aluminum, total	E420/WT	0.0030	mg/L	7.50	DLHC	50 mg/L	--	--	--	--	--	--	--
Antimony, total	E420/WT	0.00010	mg/L	<0.00100	DLHC	5 mg/L	--	--	--	--	--	--	--
Arsenic, total	E420/WT	0.00010	mg/L	0.00350	DLHC	1 mg/L	0.02 mg/L	--	--	--	--	--	--
Cadmium, total	E420/WT	0.0000050	mg/L	0.000212	DLHC	0.7 mg/L	0.008 mg/L	--	--	--	--	--	--
Chromium, total	E420/WT	0.00050	mg/L	0.0107	DLHC	2 mg/L	0.08 mg/L	--	--	--	--	--	--
Cobalt, total	E420/WT	0.00010	mg/L	0.00391	DLHC	5 mg/L	--	--	--	--	--	--	--
Copper, total	E420/WT	0.00050	mg/L	0.0103	DLHC	3 mg/L	0.05 mg/L	--	--	--	--	--	--
Lead, total	E420/WT	0.000050	mg/L	0.00401	DLHC	1 mg/L	0.12 mg/L	--	--	--	--	--	--
Manganese, total	E420/WT	0.00010	mg/L	0.144	DLHC	5 mg/L	0.15 mg/L	--	--	--	--	--	--
Mercury, total	E508/WT	0.0000050	mg/L	<0.0000050		0.01 mg/L	0.0004 mg/L	--	--	--	--	--	--
Molybdenum, total	E420/WT	0.000050	mg/L	0.0203	DLHC	5 mg/L	--	--	--	--	--	--	--
Nickel, total	E420/WT	0.00050	mg/L	0.00914	DLHC	2 mg/L	0.08 mg/L	--	--	--	--	--	--
Selenium, total	E420/WT	0.000050	mg/L	0.00154	DLHC	1 mg/L	0.02 mg/L	--	--	--	--	--	--
Silver, total	E420/WT	0.000010	mg/L	<0.000100	DLHC	5 mg/L	0.12 mg/L	--	--	--	--	--	--
Tin, total	E420/WT	0.00010	mg/L	0.00117	DLHC	5 mg/L	--	--	--	--	--	--	--
Titanium, total	E420/WT	0.00030	mg/L	0.253	DLHC	5 mg/L	--	--	--	--	--	--	--
Zinc, total	E420/WT	0.0030	mg/L	<0.0300	DLHC	2 mg/L	0.04 mg/L	--	--	--	--	--	--

Analyte	Method/Lab	LOR	Unit	WT2500943-001 (Continued)		DURSUB SAN	DURSUB STM	--	--	--	--
Aggregate Organics											
Biochemical oxygen demand [BOD]	E550/WT	2.0	mg/L	652	HTD	300 mg/L	15 mg/L	--	--	--	--
Oil & grease (gravimetric)	E567/WT	5.0	mg/L	<5.0		--	--	--	--	--	--
Oil & grease, animal/vegetable (gravimetric)	EC567A.SG/WT	5.0	mg/L	<5.0		150 mg/L	--	--	--	--	--
Oil & grease, mineral (gravimetric)	E567SG/WT	5.0	mg/L	<5.0		15 mg/L	--	--	--	--	--
Phenols, total (4AAP)	E562/WT	0.0010	mg/L	<0.0010		1 mg/L	0.008 mg/L	--	--	--	--
Volatile Organic Compounds											
Benzene	E611D/WT	0.50	µg/L	<0.50		10 µg/L	2 µg/L	--	--	--	--
Chloroform	E611D/WT	0.50	µg/L	4.98		40 µg/L	2 µg/L	--	--	--	--
Dichlorobenzene, 1,2-	E611D/WT	0.50	µg/L	<0.50		50 µg/L	5.6 µg/L	--	--	--	--
Dichlorobenzene, 1,4-	E611D/WT	0.50	µg/L	<0.50		80 µg/L	6.8 µg/L	--	--	--	--
Dichloroethylene, cis-1,2-	E611D/WT	0.50	µg/L	<0.50		4000 µg/L	5.6 µg/L	--	--	--	--
Dichloromethane	E611D/WT	1.0	µg/L	<1.0		2000 µg/L	5.2 µg/L	--	--	--	--
Dichloropropylene, trans-1,3-	E611D/WT	0.30	µg/L	<0.30		140 µg/L	5.6 µg/L	--	--	--	--
Ethylbenzene	E611D/WT	0.50	µg/L	<0.50		160 µg/L	2 µg/L	--	--	--	--
Methyl ethyl ketone [MEK]	E611D/WT	20	µg/L	<20		8000 µg/L	--	--	--	--	--
Styrene	E611D/WT	0.50	µg/L	<0.50		200 µg/L	--	--	--	--	--
Tetrachloroethane, 1,1,2,2-	E611D/WT	0.50	µg/L	<0.50		1400 µg/L	17 µg/L	--	--	--	--
Tetrachloroethylene	E611D/WT	0.50	µg/L	<0.50		1000 µg/L	4.4 µg/L	--	--	--	--
Toluene	E611D/WT	0.50	µg/L	1.70		270 µg/L	2 µg/L	--	--	--	--
Trichloroethylene	E611D/WT	0.50	µg/L	<0.50		400 µg/L	8 µg/L	--	--	--	--
Xylene, m+p-	E611D/WT	0.40	µg/L	<0.40		--	--	--	--	--	--
Xylene, o-	E611D/WT	0.30	µg/L	<0.30		--	--	--	--	--	--
Xylenes, total	E611D/WT	0.50	µg/L	<0.50		1400 µg/L	4.4 µg/L	--	--	--	--
Volatile Organic Compounds Surrogates											
Bromofluorobenzene, 4-	E611D/WT	1.0	%	99.2		--	--	--	--	--	--
Difluorobenzene, 1,4-	E611D/WT	1.0	%	97.3		--	--	--	--	--	--
Phthalate Esters											
bis(2-Ethylhexyl) phthalate [DEHP]	E625A/WT	0.60	µg/L	<7.20	RRR	12 µg/L	8.8 µg/L	--	--	--	--
Di-n-butyl phthalate	E625A/WT	1.0	µg/L	<1.0		80 µg/L	15 µg/L	--	--	--	--
Semi-Volatile Organics Surrogates											
Fluorobiphenyl, 2-	E625A/WT	1.0	%	80.8		--	--	--	--	--	--
Nitrobenzene-d5	E625A/WT	1.0	%	86.8		--	--	--	--	--	--
Terphenyl-d14, p-	E625A/WT	1.0	%	97.5		--	--	--	--	--	--

Analyte	Method/Lab	LOR	Unit	WT2500943-001 (Continued)	DURSUB SAN	DURSUB STM	--	--	--	--
Phenolics Surrogates										
Tribromophenol, 2,4,6-	E625A/WT	0.50	%	92.5	--	--	--	--	--	--
Nonylphenols										
Nonylphenol [NP]	E749A/WT	0.40	µg/L	<0.40	20 µg/L	--	--	--	--	--
Nonylphenol diethoxylate [NP2EO]	E749B/WT	0.10	µg/L	<0.10	--	--	--	--	--	--
Nonylphenol ethoxylates, mono+di	E749B/WT	2.0	µg/L	<2.0	200 µg/L	--	--	--	--	--
Nonylphenol monoethoxylate [NP1EO]	E749B/WT	0.40	µg/L	<0.40	--	--	--	--	--	--
Polychlorinated Biphenyls										
Aroclor 1016	E687/WT	0.020	µg/L	<0.020	--	--	--	--	--	--
Aroclor 1221	E687/WT	0.020	µg/L	<0.020	--	--	--	--	--	--
Aroclor 1232	E687/WT	0.020	µg/L	<0.020	--	--	--	--	--	--
Aroclor 1242	E687/WT	0.020	µg/L	<0.020	--	--	--	--	--	--
Aroclor 1248	E687/WT	0.020	µg/L	<0.020	--	--	--	--	--	--
Aroclor 1254	E687/WT	0.020	µg/L	<0.020	--	--	--	--	--	--
Aroclor 1260	E687/WT	0.020	µg/L	<0.020	--	--	--	--	--	--
Aroclor 1262	E687/WT	0.020	µg/L	<0.020	--	--	--	--	--	--
Aroclor 1268	E687/WT	0.020	µg/L	<0.020	--	--	--	--	--	--
Polychlorinated biphenyls [PCBs], total	E687/WT	0.060	µg/L	<0.060	1 µg/L	0.4 µg/L	--	--	--	--
Decachlorobiphenyl	E687/WT	0.1	%	65.0	--	--	--	--	--	--
Tetrachloro-m-xylene	E687/WT	0.1	%	94.0	--	--	--	--	--	--

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

Summary of Guideline Breaches by Sample

SampleID/Client ID	Matrix	Analyte	Analyte Summary	Guideline	Category	Result	Limit
MW104 (UNFILTERED)	Water	Biochemical oxygen demand [BOD]		DURSUB	SAN	652 mg/L	300 mg/L
		Solids, total suspended [TSS]				77.7 mg/L	15 mg/L
	Water	Biochemical oxygen demand [BOD]		DURSUB	STM	652 mg/L	15 mg/L
		Chloroform				4.98 µg/L	2 µg/L

Page : 6 of 6
Work Order : WT2500943
Client : Fisher Engineering Limited
Project : 24-14410

Key:

DURSUB

Ontario Durham Sewer Use Bylaw (55-2013)

SAN

Durham Sanitary Sewer (55-2013)

STM

Durham Storm Sewer - (55-2013)

QUALITY CONTROL INTERPRETIVE REPORT

Work Order	: WT2500943	Page	: 1 of 10
Client	: Fisher Engineering Limited	Laboratory	: ALS Environmental - Waterloo
Contact	: Clive Wiggin	Account Manager	: Emily Hansen
Address	: 15-400 Esna Park Drive Markham ON Canada L3R 3K2	Address	: 60 Northland Road, Unit 1 Waterloo, Ontario Canada N2V 2B8
Telephone	: 905 475 7755, Ext. 29	Telephone	: +1 519 886 6910
Project	: 24-14410	Date Samples Received	: 16-Jan-2025 15:29
PO	: ----	Issue Date	: 28-Jan-2025 15:36
C-O-C number	: 23-1105097		
Sampler	: NNAMDI		
Site	: ----		
Quote number	: ALS 2025 STANDING OFFER		
No. of samples received	: 1		
No. of samples analysed	: 1		

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "----" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers : Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

- No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

- Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

- No Quality Control Sample Frequency Outliers occur.

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water											Evaluation: ✖ = Holding time exceedance ; ✓ = Within Holding Time						
Analyte Group : Analytical Method	Container / Client Sample ID(s)	Method	Sampling Date	Extraction / Preparation				Analysis			Analysis Date	Holding Times					
				Preparation Date	Holding Times		Eval	Analysis Date	Holding Times			Rec	Actual				
Aggregate Organics : Biochemical Oxygen Demand - 5 day																	
HDPE [BOD HT-4d] MW104 (UNFILTERED)				E550	16-Jan-2025	---	---	---			23-Jan-2025	4 days	7 days	✖ EHT			
Aggregate Organics : Mineral Oil & Grease by Gravimetry																	
Amber glass (hydrochloric acid) MW104 (UNFILTERED)				E567SG	16-Jan-2025	20-Jan-2025	28 days	5 days	✓		22-Jan-2025	28 days	7 days	✓			
Aggregate Organics : Oil & Grease by Gravimetry																	
Amber glass (hydrochloric acid) MW104 (UNFILTERED)				E567	16-Jan-2025	20-Jan-2025	28 days	5 days	✓		22-Jan-2025	28 days	7 days	✓			
Aggregate Organics : Phenols (4AAP) in Water by Colorimetry																	
Amber glass total (sulfuric acid) [ON MECP] MW104 (UNFILTERED)				E562	16-Jan-2025	20-Jan-2025	28 days	5 days	✓		21-Jan-2025	28 days	5 days	✓			
Anions and Nutrients : Fluoride in Water by IC																	
HDPE [ON MECP] MW104 (UNFILTERED)				E235.F	16-Jan-2025	20-Jan-2025	28 days	5 days	✓		21-Jan-2025	28 days	5 days	✓			
Anions and Nutrients : Sulfate in Water by IC																	
HDPE [ON MECP] MW104 (UNFILTERED)				E235.SO4	16-Jan-2025	20-Jan-2025	28 days	5 days	✓		21-Jan-2025	28 days	5 days	✓			
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)																	
Amber glass total (sulfuric acid) [ON MECP] MW104 (UNFILTERED)				E318	16-Jan-2025	22-Jan-2025	28 days	6 days	✓		22-Jan-2025	28 days	7 days	✓			

Matrix: Water Evaluation: ✘ = Holding time exceedance ; ✓ = Within Holding Time

Analyte Group : Analytical Method	Method	Sampling Date	Extraction / Preparation				Analysis			
			Preparation Date	Holding Times		Eval	Analysis Date	Holding Times		Eval
				Rec	Actual			Rec	Actual	
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid) [ON MECP] MW104 (UNFILTERED)	E372-U	16-Jan-2025	21-Jan-2025	28 days	6 days	✓	23-Jan-2025	28 days	8 days	✓
Cyanides : Total Cyanide										
Opaque HDPE - total (sodium hydroxide) MW104 (UNFILTERED)	E333	16-Jan-2025	21-Jan-2025	14 days	6 days	✓	21-Jan-2025	14 days	6 days	✓
Microbiological Tests : E. coli (MF-mFC-BCIG)										
Sterile HDPE (Sodium thiosulphate) [ON MECP] MW104 (UNFILTERED)	E012A.EC	16-Jan-2025	----	----	----		18-Jan-2025	48 hrs	56 hrs	✓
Nonylphenols : Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode										
Amber glass/Teflon lined cap - LCMS MW104 (UNFILTERED)	E749B	16-Jan-2025	20-Jan-2025	7 days	5 days	✓	20-Jan-2025	7 days	0 days	✓
Nonylphenols : Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode										
Amber glass/Teflon lined cap - LCMS MW104 (UNFILTERED)	E749A	16-Jan-2025	20-Jan-2025	7 days	5 days	✓	20-Jan-2025	7 days	0 days	✓
Phthalate Esters : BNA (Routine List) by GC-MS-MS										
Amber glass/Teflon lined septa cap - SVOCs (sodium thiosulfate) [ON MECP] MW104 (UNFILTERED)	E625A	16-Jan-2025	21-Jan-2025	14 days	5 days	✓	21-Jan-2025	40 days	0 days	✓
Physical Tests : pH by Meter										
HDPE [ON MECP] MW104 (UNFILTERED)	E108	16-Jan-2025	20-Jan-2025	14 days	5 days	✓	21-Jan-2025	14 days	5 days	✓
Physical Tests : TSS by Gravimetry										
HDPE [ON MECP] MW104 (UNFILTERED)	E160	16-Jan-2025	----	----	----		21-Jan-2025	7 days	6 days	✓
Polychlorinated Biphenyls : PCB Aroclors by GC-MS										
Amber glass/Teflon lined cap MW104 (UNFILTERED)	E687	16-Jan-2025	20-Jan-2025	365 days	4 days	✓	21-Jan-2025	40 days	1 days	✓

Matrix: Water Evaluation: ✗ = Holding time exceedance ; ✓ = Within Holding Time

Analyte Group : Analytical Method	Container / Client Sample ID(s)	Method	Sampling Date	Extraction / Preparation				Analysis			
				Preparation Date	Holding Times		Eval	Analysis Date	Holding Times		Eval
					Rec	Actual			Rec	Actual	
Total Metals : Total Mercury in Water by CVAAS											
Glass vial total (hydrochloric acid) [ON MECP] MW104 (UNFILTERED)		E508	16-Jan-2025	20-Jan-2025	28 days	4 days	✓	20-Jan-2025	28 days	5 days	✓
Total Metals : Total Metals in Water by CRC ICPMS											
HDPE total (nitric acid) MW104 (UNFILTERED)		E420	16-Jan-2025	20-Jan-2025	180 days	4 days	✓	20-Jan-2025	180 days	4 days	✓
Volatile Organic Compounds : VOCs (Eastern Canada List) by Headspace GC-MS											
Glass vial (sodium bisulfate) MW104 (UNFILTERED)		E611D	16-Jan-2025	20-Jan-2025	14 days	4 days	✓	20-Jan-2025	14 days	4 days	✓

Legend & Qualifier Definitions

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water

Evaluation: ✗ = QC frequency outside specification; ✓ = QC frequency within specification.

Quality Control Sample Type	Analytical Methods	Method	QC Lot #	Count		Frequency (%)		
				QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)								
Biochemical Oxygen Demand - 5 day		E550	1844271	1	19	5.2	5.0	✓
E. coli (MF-mFC-BCIG)		E012A.EC	1844009	1	9	11.1	5.0	✓
Fluoride in Water by IC		E235.F	1845212	1	12	8.3	5.0	✓
Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode		E749B	1844716	1	16	6.2	5.0	✓
Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode		E749A	1844715	1	16	6.2	5.0	✓
pH by Meter		E108	1845210	1	18	5.5	5.0	✓
Phenols (4AAP) in Water by Colorimetry		E562	1845533	1	11	9.0	5.0	✓
Sulfate in Water by IC		E235.SO4	1845216	1	12	8.3	5.0	✓
Total Cyanide		E333	1844743	1	4	25.0	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)		E318	1845371	1	19	5.2	5.0	✓
Total Mercury in Water by CVAAS		E508	1844734	1	18	5.5	5.0	✓
Total Metals in Water by CRC ICPMS		E420	1844677	1	18	5.5	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)		E372-U	1845372	1	17	5.8	5.0	✓
TSS by Gravimetry		E160	1846362	1	20	5.0	4.7	✓
VOCs (Eastern Canada List) by Headspace GC-MS		E611D	1844910	1	20	5.0	5.0	✓
Laboratory Control Samples (LCS)								
Biochemical Oxygen Demand - 5 day		E550	1844271	1	19	5.2	5.0	✓
BNA (Routine List) by GC-MS-MS		E625A	1845765	1	8	12.5	5.0	✓
Fluoride in Water by IC		E235.F	1845212	1	12	8.3	5.0	✓
Mineral Oil & Grease by Gravimetry		E567SG	1845317	1	16	6.2	5.0	✓
Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode		E749B	1844716	1	16	6.2	5.0	✓
Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode		E749A	1844715	1	16	6.2	5.0	✓
Oil & Grease by Gravimetry		E567	1845316	1	20	5.0	5.0	✓
PCB Aroclors by GC-MS		E687	1844707	1	7	14.2	4.7	✓
pH by Meter		E108	1845210	1	18	5.5	5.0	✓
Phenols (4AAP) in Water by Colorimetry		E562	1845533	1	11	9.0	5.0	✓
Sulfate in Water by IC		E235.SO4	1845216	1	12	8.3	5.0	✓
Total Cyanide		E333	1844743	1	4	25.0	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)		E318	1845371	1	19	5.2	5.0	✓
Total Mercury in Water by CVAAS		E508	1844734	1	18	5.5	5.0	✓
Total Metals in Water by CRC ICPMS		E420	1844677	1	18	5.5	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)		E372-U	1845372	1	17	5.8	5.0	✓
TSS by Gravimetry		E160	1846362	1	20	5.0	4.7	✓
VOCs (Eastern Canada List) by Headspace GC-MS		E611D	1844910	1	20	5.0	5.0	✓
Method Blanks (MB)								

Matrix: Water Evaluation: ✗ = QC frequency outside specification; ✓ = QC frequency within specification.

Quality Control Sample Type	Analytical Methods	Method	QC Lot #	Count		Frequency (%)		
				QC	Regular	Actual	Expected	Evaluation
Method Blanks (MB) - Continued								
Biochemical Oxygen Demand - 5 day		E550	1844271	1	19	5.2	5.0	✓
BNA (Routine List) by GC-MS-MS		E625A	1845765	1	8	12.5	5.0	✓
E. coli (MF-mFC-BCIG)		E012A.EC	1844009	1	9	11.1	5.0	✓
Fluoride in Water by IC		E235.F	1845212	1	12	8.3	5.0	✓
Mineral Oil & Grease by Gravimetry		E567SG	1845317	1	16	6.2	5.0	✓
Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode		E749B	1844716	1	16	6.2	5.0	✓
Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode		E749A	1844715	1	16	6.2	5.0	✓
Oil & Grease by Gravimetry		E567	1845316	1	20	5.0	5.0	✓
PCB Aroclors by GC-MS		E687	1844707	1	7	14.2	4.7	✓
Phenols (4AAP) in Water by Colorimetry		E562	1845533	1	11	9.0	5.0	✓
Sulfate in Water by IC		E235.SO4	1845216	1	12	8.3	5.0	✓
Total Cyanide		E333	1844743	1	4	25.0	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)		E318	1845371	1	19	5.2	5.0	✓
Total Mercury in Water by CVAAS		E508	1844734	1	18	5.5	5.0	✓
Total Metals in Water by CRC ICPMS		E420	1844677	1	18	5.5	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)		E372-U	1845372	1	17	5.8	5.0	✓
TSS by Gravimetry		E160	1846362	1	20	5.0	4.7	✓
VOCs (Eastern Canada List) by Headspace GC-MS		E611D	1844910	1	20	5.0	5.0	✓
Matrix Spikes (MS)								
Fluoride in Water by IC		E235.F	1845212	1	12	8.3	5.0	✓
Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode		E749B	1844716	1	16	6.2	5.0	✓
Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode		E749A	1844715	1	16	6.2	5.0	✓
Phenols (4AAP) in Water by Colorimetry		E562	1845533	1	11	9.0	5.0	✓
Sulfate in Water by IC		E235.SO4	1845216	1	12	8.3	5.0	✓
Total Cyanide		E333	1844743	1	4	25.0	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)		E318	1845371	1	19	5.2	5.0	✓
Total Mercury in Water by CVAAS		E508	1844734	1	18	5.5	5.0	✓
Total Metals in Water by CRC ICPMS		E420	1844677	1	18	5.5	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)		E372-U	1845372	1	17	5.8	5.0	✓
VOCs (Eastern Canada List) by Headspace GC-MS		E611D	1844910	1	20	5.0	5.0	✓

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods		Method / Lab	Matrix	Method Reference	Method Descriptions
E. coli (MF-mFC-BCIG)		E012A.EC ALS Environmental - Waterloo	Water	APHA 9222D (mod)	Following filtration (0.45 µm), and incubation at 44.5±0.2°C for 24 hours, colonies exhibiting characteristic morphology of the target organism are enumerated.
pH by Meter		E108 ALS Environmental - Waterloo	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results, pH should be measured in the field within the recommended 15 minute hold time.
TSS by Gravimetry		E160 ALS Environmental - Waterloo	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the filtered solids. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
Fluoride in Water by IC		E235.F ALS Environmental - Waterloo	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
Sulfate in Water by IC		E235.SO4 ALS Environmental - Waterloo	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
Total Kjeldahl Nitrogen by Fluorescence (Low Level)		E318 ALS Environmental - Waterloo	Water	Method Fialab 100, 2018	TKN in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde). This method is approved under US EPA 40 CFR Part 136 (May 2021).
Total Cyanide		E333 ALS Environmental - Waterloo	Water	ISO 14403 (mod)	Total or Strong Acid Dissociable (SAD) Cyanide is determined by Continuous Flow Analyzer (CFA) with in-line UV digestion followed by colourmetric analysis. Method Limitation: High levels of thiocyanate (SCN) may cause positive interference (up to 0.5% of SCN concentration).
Total Phosphorus by Colourimetry (0.002 mg/L)		E372-U ALS Environmental - Waterloo	Water	APHA 4500-P E (mod)	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Total Metals in Water by CRC ICPMS		E420 ALS Environmental - Waterloo	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Analytical Methods		Method / Lab	Matrix	Method Reference	Method Descriptions
Total Mercury in Water by CVAAS		E508 ALS Environmental - Waterloo	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS
Biochemical Oxygen Demand - 5 day		E550 ALS Environmental - Waterloo	Water	APHA 5210 B (mod)	Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter. Free chlorine is a negative interference in the BOD method; please advise ALS when free chlorine is present in samples.
Phenols (4AAP) in Water by Colorimetry		E562 ALS Environmental - Waterloo	Water	EPA 9066	This automated method is based on the distillation of phenol and subsequent reaction of the distillate with alkaline ferricyanide (K3Fe(CN)6) and 4-amino-antipyrine (4-AAP) to form a red complex which is measured colorimetrically.
Oil & Grease by Gravimetry		E567 ALS Environmental - Waterloo	Water	BC MOE Lab Manual (Oil & Grease) (mod)	The entire water sample is extracted with hexane and the extract is evaporated to dryness. The residue is then weighed to determine Oil and Grease.
Mineral Oil & Grease by Gravimetry		E567SG ALS Environmental - Waterloo	Water	BC MOE Lab Manual (Oil & Grease) (mod)	The entire water sample is extracted with hexane, followed by silica gel treatment after which the extract is evaporated to dryness. The residue is then weighed to determine Mineral Oil and Grease.
VOCs (Eastern Canada List) by Headspace GC-MS		E611D ALS Environmental - Waterloo	Water	EPA 8260D (mod)	Volatile Organic Compounds (VOCs) are analyzed by static headspace GC-MS. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler, causing VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law.
BNA (Routine List) by GC-MS-MS		E625A ALS Environmental - Waterloo	Water	EPA 8270E (mod)	BNA are analyzed by GC-MS-MS.
PCB Aroclors by GC-MS		E687 ALS Environmental - Waterloo	Water	EPA 8270E (mod)	PCB Aroclors are analyzed by GC-MS
Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode		E749A ALS Environmental - Waterloo	Water	ASTM D7485-16 (mod)	An aliquot of 5.0 mL of sample is spiked with internal standards and analyzed by Direct Aqueous Injection and LC-MS-MS-Negative mode.
Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode		E749B ALS Environmental - Waterloo	Water	ASTM D7485-16 (mod)	An aliquot of 5.0 mL of sample is spiked with internal standards and analyzed by Direct Aqueous Injection and LC-MS-MS.
Animal & Vegetable Oil & Grease by Gravimetry		EC567A.SG ALS Environmental - Waterloo	Water	APHA 5520 (mod)	Animal & vegetable oil and grease is calculated as follows: Oil & Grease (gravimetric) minus Mineral Oil & Grease (gravimetric)

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Digestion for TKN in water	EP318 ALS Environmental - Waterloo	Water	APHA 4500-Norg D (mod)	Samples are digested at high temperature using Sulfuric Acid with Copper catalyst, which converts organic nitrogen sources to Ammonia, which is then quantified by the analytical method as TKN. This method is unsuitable for samples containing high levels of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be biased low.
Digestion for Total Phosphorus in water	EP372 ALS Environmental - Waterloo	Water	APHA 4500-P E (mod.)	Samples are heated with a persulfate digestion reagent.
Oil & Grease Extraction for Gravimetry	EP567 ALS Environmental - Waterloo	Water	BC MOE Lab Manual (Oil & Grease) (mod)	The entire water sample is extracted with hexane by liquid-liquid extraction.
VOCs Preparation for Headspace Analysis	EP581 ALS Environmental - Waterloo	Water	EPA 5021A (mod)	Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler. An aliquot of the headspace is then injected into a GC-MS-FID.
BNA Extraction	EP625 ALS Environmental - Waterloo	Water	EPA 3510C (mod)	SVOCs are extracted from aqueous sample using DCM liquid-liquid extraction.
Pesticides, PCB, and Neutral Extractable Chlorinated Hydrocarbons Extraction	EP660 ALS Environmental - Waterloo	Water	EPA 3511 (mod)	Samples are extracted from aqueous sample using an organic solvent liquid-liquid extraction.
Preparation of Nonylphenol and Nonylphenol Ethoxylates	EP749 ALS Environmental - Waterloo	Water	ASTM D7485-16 (mod)	An aliquot of 5.0 mL of sample is spiked with internal standards and analyzed by Direct Aqueous Injection and LC-MS/MS.

QUALITY CONTROL REPORT

Work Order	: WT2500943	Page	: 1 of 12
Client	: Fisher Engineering Limited	Laboratory	: ALS Environmental - Waterloo
Contact	: Clive Wiggin	Account Manager	: Emily Hansen
Address	: 15-400 Esna Park Drive Markham ON Canada L3R 3K2	Address	: 60 Northland Road, Unit 1 Waterloo, Ontario Canada N2V 2B8
Telephone	: 905 475 7755, Ext. 29	Telephone	: +1 519 886 6910
Project	: 24-14410	Date Samples Received	: 16-Jan-2025 15:29
PO	: ----	Date Analysis Commenced	: 18-Jan-2025
C-O-C number	: 23-1105097	Issue Date	: 28-Jan-2025 15:40
Sampler	: NNAMDI		
Site	: ----		
Quote number	: ALS 2025 STANDING OFFER		
No. of samples received	: 1		
No. of samples analysed	: 1		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Danielle Gravel	Supervisor - Semi-Volatile Instrumentation	Waterloo Organics, Waterloo, Ontario
Hannah Lewis	Inorganics Analyst	Waterloo Inorganics, Waterloo, Ontario
Jeminikumari Patel	Analyst	Waterloo Microbiology, Waterloo, Ontario
Manuel TavaraTello	Supervisor - Semi-Volatile Extractions	Waterloo Organics, Waterloo, Ontario
Nik Perkio	Senior Analyst	Waterloo Inorganics, Waterloo, Ontario
Nik Perkio	Senior Analyst	Waterloo Metals, Waterloo, Ontario
Sanja Risticevic	Department Manager - LCMS	Waterloo LCMS, Waterloo, Ontario
Sarah Birch	VOC Section Supervisor	Waterloo VOC, Waterloo, Ontario
Walt Kippenhuck	Supervisor - Inorganic	Waterloo Inorganics, Waterloo, Ontario

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "—" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water

Laboratory Duplicate (DUP) Report											
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC Lot: 1845210)											
WT2500835-004	Anonymous	pH	---	E108	0.10	pH units	8.33	8.32	0.120%	4%	---
Physical Tests (QC Lot: 1846362)											
WT2500787-001	Anonymous	Solids, total suspended [TSS]	---	E160	3.0	mg/L	19.1	20.3	1.2	Diff <2x LOR	---
Anions and Nutrients (QC Lot: 1845212)											
WT2500835-002	Anonymous	Fluoride	16984-48-8	E235.F	0.100	mg/L	0.268	0.263	0.005	Diff <2x LOR	---
Anions and Nutrients (QC Lot: 1845216)											
WT2500835-002	Anonymous	Sulfate (as SO ₄)	14808-79-8	E235.SO4	1.50	mg/L	283	284	0.306%	20%	---
Anions and Nutrients (QC Lot: 1845371)											
WT2500878-001	Anonymous	Kjeldahl nitrogen, total [TKN]	---	E318	0.050	mg/L	1.62	1.89	15.2%	20%	---
Anions and Nutrients (QC Lot: 1845372)											
WT2500879-001	Anonymous	Phosphorus, total	7723-14-0	E372-U	0.0200	mg/L	8.39	8.36	0.297%	20%	---
Cyanides (QC Lot: 1844743)											
RG2500038-005	Anonymous	Cyanide, strong acid dissociable (Total)	---	E333	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR	---
Microbiological Tests (QC Lot: 1844009)											
WT2500967-001	Anonymous	Coliforms, Escherichia coli [E. coli]	---	E012A.EC	1	CFU/100mL	<1	<1	0	Diff <2x LOR	---
Total Metals (QC Lot: 1844677)											
HA2500163-001	Anonymous	Aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0212	0.0209	0.0003	Diff <2x LOR	---
		Antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	---
		Arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00015	0.00014	0.000005	Diff <2x LOR	---
		Cadmium, total	7440-43-9	E420	0.0000050	mg/L	0.0000126	0.0000129	0.000003	Diff <2x LOR	---
		Chromium, total	7440-47-3	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	---
		Cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	---
		Copper, total	7440-50-8	E420	0.00050	mg/L	0.0988	0.0987	0.114%	20%	---
		Lead, total	7439-92-1	E420	0.000050	mg/L	1.33 µg/L	0.00136	2.14%	20%	---
		Manganese, total	7439-96-5	E420	0.00010	mg/L	0.00103	0.00096	0.00007	Diff <2x LOR	---
		Molybdenum, total	7439-98-7	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	---
		Nickel, total	7440-02-0	E420	0.00050	mg/L	0.00061	0.00062	0.000008	Diff <2x LOR	---
		Selenium, total	7782-49-2	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	---
		Silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	---
		Tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	---

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier	
Total Metals (QC Lot: 1844677) - continued												
HA2500163-001	Anonymous	Titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	---	
		Zinc, total	7440-66-6	E420	0.0030	mg/L	0.243	0.244	0.470%	20%	---	
Total Metals (QC Lot: 1844734)												
TY2500455-002	Anonymous	Mercury, total	7439-97-6	E508	0.000100	mg/L	<0.100 µg/L	<0.000100	0	Diff <2x LOR	---	
Aggregate Organics (QC Lot: 1844271)												
WT2500962-001	Anonymous	Biochemical oxygen demand [BOD]	---	E550	3.0	mg/L	<3.0	<3.0	0.0%	30%	---	
Aggregate Organics (QC Lot: 1845533)												
WP2500644-001	Anonymous	Phenols, total (4AAP)	---	E562	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	---	
Volatile Organic Compounds (QC Lot: 1844910)												
HA2500148-001	Anonymous	Benzene	71-43-2	E611D	1.00	µg/L	<1.00	<1.00	0	Diff <2x LOR	---	
		Chloroform	67-66-3	E611D	1.00	µg/L	<1.00	<1.00	0	Diff <2x LOR	---	
		Dichlorobenzene, 1,2-	95-50-1	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	---	
		Dichlorobenzene, 1,4-	106-46-7	E611D	1.00	µg/L	<1.00	<1.00	0	Diff <2x LOR	---	
		Dichloroethylene, cis-1,2-	156-59-2	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	---	
		Dichloromethane	75-09-2	E611D	3.0	µg/L	<3.0	<3.0	0	Diff <2x LOR	---	
		Dichloropropylene, trans-1,3-	10061-02-6	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	---	
		Ethylbenzene	100-41-4	E611D	1.00	µg/L	<1.00	<1.00	0	Diff <2x LOR	---	
		Methyl ethyl ketone [MEK]	78-93-3	E611D	20	µg/L	<20	<20	0	Diff <2x LOR	---	
		Styrene	100-42-5	E611D	1.00	µg/L	<1.00	<1.00	0	Diff <2x LOR	---	
		Tetrachloroethane, 1,1,2,2-	79-34-5	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	---	
		Tetrachloroethylene	127-18-4	E611D	1.00	µg/L	<1.00	<1.00	0	Diff <2x LOR	---	
		Toluene	108-88-3	E611D	1.00	µg/L	<1.00	<1.00	0	Diff <2x LOR	---	
		Trichloroethylene	79-01-6	E611D	1.00	µg/L	<1.00	<1.00	0	Diff <2x LOR	---	
		Xylene, m+p-	179601-23-1	E611D	2.00	µg/L	<2.00	<2.00	0	Diff <2x LOR	---	
		Xylene, o-	95-47-6	E611D	1.00	µg/L	<1.00	<1.00	0	Diff <2x LOR	---	
Nonylphenols (QC Lot: 1844715)												
WT2500721-001	Anonymous	Nonylphenol [NP]	84852-15-3	E749A	0.40	µg/L	<0.40	<0.40	0	Diff <2x LOR	---	
Nonylphenols (QC Lot: 1844716)												
WT2500721-001	Anonymous	Nonylphenol diethoxylate [NP2EO]	20427-84-3	E749B	0.10	µg/L	<0.10	<0.10	0	Diff <2x LOR	---	
		Nonylphenol monoethoxylate [NP1EO]	27986-36-3	E749B	0.40	µg/L	<0.40	<0.40	0	Diff <2x LOR	---	

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 1846362)						
Solids, total suspended [TSS]	----	E160	3	mg/L	<3.0	----
Anions and Nutrients (QCLot: 1845212)						
Fluoride	16984-48-8	E235.F	0.02	mg/L	<0.020	----
Anions and Nutrients (QCLot: 1845216)						
Sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	<0.30	----
Anions and Nutrients (QCLot: 1845371)						
Kjeldahl nitrogen, total [TKN]	----	E318	0.05	mg/L	<0.050	----
Anions and Nutrients (QCLot: 1845372)						
Phosphorus, total	7723-14-0	E372-U	0.002	mg/L	<0.0020	----
Cyanides (QCLot: 1844743)						
Cyanide, strong acid dissociable (Total)	----	E333	0.002	mg/L	<0.0020	----
Microbiological Tests (QCLot: 1844009)						
Coliforms, Escherichia coli [E. coli]	----	E012A.EC	1	CFU/100mL	<1	----
Total Metals (QCLot: 1844677)						
Aluminum, total	7429-90-5	E420	0.003	mg/L	<0.0030	----
Antimony, total	7440-36-0	E420	0.0001	mg/L	<0.00010	----
Arsenic, total	7440-38-2	E420	0.0001	mg/L	<0.00010	----
Cadmium, total	7440-43-9	E420	0.000005	mg/L	<0.0000050	----
Chromium, total	7440-47-3	E420	0.0005	mg/L	<0.00050	----
Cobalt, total	7440-48-4	E420	0.0001	mg/L	<0.00010	----
Copper, total	7440-50-8	E420	0.0005	mg/L	<0.00050	----
Lead, total	7439-92-1	E420	0.00005	mg/L	<0.000050	----
Manganese, total	7439-96-5	E420	0.0001	mg/L	<0.00010	----
Molybdenum, total	7439-98-7	E420	0.00005	mg/L	<0.000050	----
Nickel, total	7440-02-0	E420	0.0005	mg/L	<0.00050	----
Selenium, total	7782-49-2	E420	0.00005	mg/L	<0.000050	----
Silver, total	7440-22-4	E420	0.00001	mg/L	<0.000010	----
Tin, total	7440-31-5	E420	0.0001	mg/L	<0.00010	----
Titanium, total	7440-32-6	E420	0.0003	mg/L	<0.00030	----
Zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	----
Total Metals (QCLot: 1844734)						

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 1844734) - continued						
Mercury, total	7439-97-6	E508	0.000005	mg/L	<0.0000050	---
Aggregate Organics (QCLot: 1844271)						
Biochemical oxygen demand [BOD]	----	E550	2	mg/L	<2.0	---
Aggregate Organics (QCLot: 1845316)						
Oil & grease (gravimetric)	----	E567	5	mg/L	<5.0	---
Aggregate Organics (QCLot: 1845317)						
Oil & grease, mineral (gravimetric)	----	E567SG	5	mg/L	<5.0	---
Aggregate Organics (QCLot: 1845533)						
Phenols, total (4AAP)	----	E562	0.001	mg/L	<0.0010	---
Volatile Organic Compounds (QCLot: 1844910)						
Benzene	71-43-2	E611D	0.5	µg/L	<0.50	---
Chloroform	67-66-3	E611D	0.5	µg/L	<0.50	---
Dichlorobenzene, 1,2-	95-50-1	E611D	0.5	µg/L	<0.50	---
Dichlorobenzene, 1,4-	106-46-7	E611D	0.5	µg/L	<0.50	---
Dichloroethylene, cis-1,2-	156-59-2	E611D	0.5	µg/L	<0.50	---
Dichloromethane	75-09-2	E611D	1	µg/L	<1.0	---
Dichloropropylene, trans-1,3-	10061-02-6	E611D	0.3	µg/L	<0.30	---
Ethylbenzene	100-41-4	E611D	0.5	µg/L	<0.50	---
Methyl ethyl ketone [MEK]	78-93-3	E611D	20	µg/L	<20	---
Styrene	100-42-5	E611D	0.5	µg/L	<0.50	---
Tetrachloroethane, 1,1,2,2-	79-34-5	E611D	0.5	µg/L	<0.50	---
Tetrachloroethylene	127-18-4	E611D	0.5	µg/L	<0.50	---
Toluene	108-88-3	E611D	0.5	µg/L	<0.50	---
Trichloroethylene	79-01-6	E611D	0.5	µg/L	<0.50	---
Xylene, m+p-	179601-23-1	E611D	0.4	µg/L	<0.40	---
Xylene, o-	95-47-6	E611D	0.3	µg/L	<0.30	---
Phthalate Esters (QCLot: 1845765)						
bis(2-Ethylhexyl) phthalate [DEHP]	117-81-7	E625A	0.6	µg/L	<0.60	---
Di-n-butyl phthalate	84-74-2	E625A	1	µg/L	<1.0	---
Nonylphenols (QCLot: 1844715)						
Nonylphenol [NP]	84852-15-3	E749A	0.4	µg/L	<0.40	---
Nonylphenols (QCLot: 1844716)						
Nonylphenol diethoxylate [NP2EO]	20427-84-3	E749B	0.1	µg/L	<0.10	---
Nonylphenol monoethoxylate [NP1EO]	27986-36-3	E749B	0.4	µg/L	<0.40	---
Polychlorinated Biphenyls (QCLot: 1844707)						

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Polychlorinated Biphenyls (QC Lot: 1844707) - continued						
Aroclor 1016	12674-11-2	E687	0.02	µg/L	<0.020	---
Aroclor 1221	11104-28-2	E687	0.02	µg/L	<0.020	---
Aroclor 1232	11141-16-5	E687	0.02	µg/L	<0.020	---
Aroclor 1242	53469-21-9	E687	0.02	µg/L	<0.020	---
Aroclor 1248	12672-29-6	E687	0.02	µg/L	<0.020	---
Aroclor 1254	11097-69-1	E687	0.02	µg/L	<0.020	---
Aroclor 1260	11096-82-5	E687	0.02	µg/L	<0.020	---
Aroclor 1262	37324-23-5	E687	0.02	µg/L	<0.020	---
Aroclor 1268	11100-14-4	E687	0.02	µg/L	<0.020	---

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Laboratory Control Sample (LCS) Report				
					Spike	Recovery (%)	Recovery Limits (%)		Qualifier
Physical Tests (QC Lot: 1845210)									
pH	---	E108	---	pH units	7 pH units	101	98.0	102	---
Physical Tests (QC Lot: 1846362)									
Solids, total suspended [TSS]	---	E160	3	mg/L	150 mg/L	92.2	85.0	115	---
Anions and Nutrients (QC Lot: 1845212)									
Fluoride	16984-48-8	E235.F	0.02	mg/L	1 mg/L	101	90.0	110	---
Anions and Nutrients (QC Lot: 1845216)									
Sulfate (as SO ₄)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	100	90.0	110	---
Anions and Nutrients (QC Lot: 1845371)									
Kjeldahl nitrogen, total [TKN]	---	E318	0.05	mg/L	4 mg/L	104	75.0	125	---
Anions and Nutrients (QC Lot: 1845372)									
Phosphorus, total	7723-14-0	E372-U	0.002	mg/L	0.333 mg/L	99.7	80.0	120	---
Cyanides (QC Lot: 1844743)									
Cyanide, strong acid dissociable (Total)	---	E333	0.002	mg/L	0.25 mg/L	92.5	80.0	120	---
Total Metals (QC Lot: 1844677)									
Aluminum, total	7429-90-5	E420	0.003	mg/L	0.1 mg/L	95.4	80.0	120	---
Antimony, total	7440-36-0	E420	0.0001	mg/L	0.05 mg/L	103	80.0	120	---
Arsenic, total	7440-38-2	E420	0.0001	mg/L	0.05 mg/L	106	80.0	120	---
Cadmium, total	7440-43-9	E420	0.000005	mg/L	0.005 mg/L	102	80.0	120	---
Chromium, total	7440-47-3	E420	0.0005	mg/L	0.012 mg/L	101	80.0	120	---
Cobalt, total	7440-48-4	E420	0.0001	mg/L	0.012 mg/L	99.3	80.0	120	---
Copper, total	7440-50-8	E420	0.0005	mg/L	0.012 mg/L	100.0	80.0	120	---
Lead, total	7439-92-1	E420	0.00005	mg/L	0.025 mg/L	99.5	80.0	120	---
Manganese, total	7439-96-5	E420	0.0001	mg/L	0.012 mg/L	102	80.0	120	---
Molybdenum, total	7439-98-7	E420	0.00005	mg/L	0.012 mg/L	102	80.0	120	---
Nickel, total	7440-02-0	E420	0.0005	mg/L	0.025 mg/L	99.8	80.0	120	---
Selenium, total	7782-49-2	E420	0.00005	mg/L	0.05 mg/L	103	80.0	120	---
Silver, total	7440-22-4	E420	0.00001	mg/L	0.005 mg/L	94.3	80.0	120	---
Tin, total	7440-31-5	E420	0.0001	mg/L	0.025 mg/L	103	80.0	120	---
Titanium, total	7440-32-6	E420	0.0003	mg/L	0.012 mg/L	98.0	80.0	120	---
Zinc, total	7440-66-6	E420	0.003	mg/L	0.025 mg/L	102	80.0	120	---

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery Limits (%)			
Analyte	CAS Number	Method	LOR	Unit	Target Concentration	LCS	Low	High	Qualifier	
Total Metals (QC Lot: 1844734)										
Mercury, total	7439-97-6	E508	0.000005	mg/L	0 mg/L	97.8	80.0	120	---	
Aggregate Organics (QC Lot: 1844271)										
Biochemical oxygen demand [BOD]	---	E550	2	mg/L	198 mg/L	97.6	85.0	115	---	
Aggregate Organics (QC Lot: 1845316)										
Oil & grease (gravimetric)	---	E567	5	mg/L	200 mg/L	97.9	70.0	130	---	
Aggregate Organics (QC Lot: 1845317)										
Oil & grease, mineral (gravimetric)	---	E567SG	5	mg/L	100 mg/L	89.5	70.0	130	---	
Aggregate Organics (QC Lot: 1845533)										
Phenols, total (4AAP)	---	E562	0.001	mg/L	0.02 mg/L	101	85.0	115	---	
Volatile Organic Compounds (QC Lot: 1844910)										
Benzene	71-43-2	E611D	0.5	µg/L	100 µg/L	103	70.0	130	---	
Chloroform	67-66-3	E611D	0.5	µg/L	100 µg/L	106	70.0	130	---	
Dichlorobenzene, 1,2-	95-50-1	E611D	0.5	µg/L	100 µg/L	100	70.0	130	---	
Dichlorobenzene, 1,4-	106-46-7	E611D	0.5	µg/L	100 µg/L	103	70.0	130	---	
Dichlorethylene, cis-1,2-	156-59-2	E611D	0.5	µg/L	100 µg/L	106	70.0	130	---	
Dichloromethane	75-09-2	E611D	1	µg/L	100 µg/L	103	70.0	130	---	
Dichloropropylene, trans-1,3-	10061-02-6	E611D	0.3	µg/L	100 µg/L	95.9	70.0	130	---	
Ethylbenzene	100-41-4	E611D	0.5	µg/L	100 µg/L	96.3	70.0	130	---	
Methyl ethyl ketone [MEK]	78-93-3	E611D	20	µg/L	100 µg/L	86.6	70.0	130	---	
Styrene	100-42-5	E611D	0.5	µg/L	100 µg/L	100	70.0	130	---	
Tetrachloroethane, 1,1,2,2-	79-34-5	E611D	0.5	µg/L	100 µg/L	95.0	70.0	130	---	
Tetrachloroethylene	127-18-4	E611D	0.5	µg/L	100 µg/L	102	70.0	130	---	
Toluene	108-88-3	E611D	0.5	µg/L	100 µg/L	104	70.0	130	---	
Trichloroethylene	79-01-6	E611D	0.5	µg/L	100 µg/L	105	70.0	130	---	
Xylene, m+p-	179601-23-1	E611D	0.4	µg/L	200 µg/L	97.3	70.0	130	---	
Xylene, o-	95-47-6	E611D	0.3	µg/L	100 µg/L	96.3	70.0	130	---	
Phthalate Esters (QC Lot: 1845765)										
bis(2-Ethylhexyl) phthalate [DEHP]	117-81-7	E625A	0.6	µg/L	33.7 µg/L	88.6	50.0	140	---	
Di-n-butyl phthalate	84-74-2	E625A	1	µg/L	33.7 µg/L	95.9	50.0	140	---	
Nonylphenols (QC Lot: 1844715)										
Nonylphenol [NP]	84852-15-3	E749A	0.4	µg/L	10 µg/L	99.5	60.0	140	---	
Nonylphenols (QC Lot: 1844716)										

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery Limits (%)			
Analyte	CAS Number	Method	LOR	Unit	Target Concentration	LCS	Low	High	Qualifier	
Nonylphenols (QC Lot: 1844716) - continued										
Nonylphenol diethoxylate [NP2EO]	20427-84-3	E749B	0.1	µg/L	2 µg/L	100	60.0	140	----	
Nonylphenol monoethoxylate [NP1EO]	27986-36-3	E749B	0.4	µg/L	10 µg/L	114	60.0	140	----	
Polychlorinated Biphenyls (QC Lot: 1844707)										
Aroclor 1016	12674-11-2	E687	0.02	µg/L	0.2 µg/L	94.8	60.0	140	----	
Aroclor 1221	11104-28-2	E687	0.02	µg/L	0.2 µg/L	94.8	60.0	140	----	
Aroclor 1232	11141-16-5	E687	0.02	µg/L	0.2 µg/L	94.8	60.0	140	----	
Aroclor 1242	53469-21-9	E687	0.02	µg/L	0.2 µg/L	94.8	60.0	140	----	
Aroclor 1248	12672-29-6	E687	0.02	µg/L	0.2 µg/L	120	60.0	140	----	
Aroclor 1254	11097-69-1	E687	0.02	µg/L	0.2 µg/L	77.8	60.0	140	----	
Aroclor 1260	11096-82-5	E687	0.02	µg/L	0.2 µg/L	90.4	60.0	140	----	
Aroclor 1262	37324-23-5	E687	0.02	µg/L	0.2 µg/L	90.4	60.0	140	----	
Aroclor 1268	11100-14-4	E687	0.02	µg/L	0.2 µg/L	90.4	60.0	140	----	

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water

Matrix Spike (MS) Report										
					Spike		Recovery (%)	Recovery Limits (%)		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Anions and Nutrients (QCLot: 1845212)										
WT2500835-002	Anonymous	Fluoride	16984-48-8	E235.F	5.16 mg/L	5 mg/L	103	75.0	125	---
Anions and Nutrients (QCLot: 1845216)										
WT2500835-002	Anonymous	Sulfate (as SO4)	14808-79-8	E235.SO4	510 mg/L	500 mg/L	102	75.0	125	---
Anions and Nutrients (QCLot: 1845371)										
WT2500878-001	Anonymous	Kjeldahl nitrogen, total [TKN]	----	E318	3.06 mg/L	2.5 mg/L	122	70.0	130	---
Anions and Nutrients (QCLot: 1845372)										
WT2500879-001	Anonymous	Phosphorus, total	7723-14-0	E372-U	ND mg/L	----	ND	70.0	130	---
Cyanides (QCLot: 1844743)										
RG2500038-005	Anonymous	Cyanide, strong acid dissociable (Total)	---	E333	0.242 mg/L	0.25 mg/L	96.8	75.0	125	---
Total Metals (QCLot: 1844677)										
HA2500163-002	Anonymous	Aluminum, total	7429-90-5	E420	0.0924 mg/L	0.1 mg/L	92.4	70.0	130	---
		Antimony, total	7440-36-0	E420	0.0515 mg/L	0.05 mg/L	103	70.0	130	---
		Arsenic, total	7440-38-2	E420	0.0511 mg/L	0.05 mg/L	102	70.0	130	---
		Cadmium, total	7440-43-9	E420	0.00514 mg/L	0.005 mg/L	103	70.0	130	---
		Chromium, total	7440-47-3	E420	0.0128 mg/L	0.012 mg/L	102	70.0	130	---
		Cobalt, total	7440-48-4	E420	0.0125 mg/L	0.012 mg/L	99.7	70.0	130	---
		Copper, total	7440-50-8	E420	ND mg/L	----	ND	70.0	130	---
		Lead, total	7439-92-1	E420	0.0241 mg/L	0.025 mg/L	96.5	70.0	130	---
		Manganese, total	7439-96-5	E420	0.0124 mg/L	0.012 mg/L	99.3	70.0	130	---
		Molybdenum, total	7439-98-7	E420	0.0133 mg/L	0.012 mg/L	106	70.0	130	---
		Nickel, total	7440-02-0	E420	0.0246 mg/L	0.025 mg/L	98.6	70.0	130	---
		Selenium, total	7782-49-2	E420	0.0482 mg/L	0.05 mg/L	96.4	70.0	130	---
		Silver, total	7440-22-4	E420	0.00476 mg/L	0.005 mg/L	95.2	70.0	130	---
		Tin, total	7440-31-5	E420	0.0265 mg/L	0.025 mg/L	106	70.0	130	---
		Titanium, total	7440-32-6	E420	0.0120 mg/L	0.012 mg/L	96.5	70.0	130	---
		Zinc, total	7440-66-6	E420	ND mg/L	----	ND	70.0	130	---
Total Metals (QCLot: 1844734)										
WT2500785-001	Anonymous	Mercury, total	7439-97-6	E508	0.0000964 mg/L	0 mg/L	96.4	70.0	130	---
Aggregate Organics (QCLot: 1845533)										
WP2500644-001	Anonymous	Phenols, total (4AAP)	----	E562	0.0200 mg/L	0.02 mg/L	100	75.0	125	---
Volatile Organic Compounds (QCLot: 1844910)										
HA2500148-001	Anonymous	Benzene	71-43-2	E611D	106 µg/L	100 µg/L	106	60.0	140	---
		Chloroform	67-66-3	E611D	110 µg/L	100 µg/L	110	60.0	140	---
		Dichlorobenzene, 1,2-	95-50-1	E611D	101 µg/L	100 µg/L	101	60.0	140	---
		Dichlorobenzene, 1,4-	106-46-7	E611D	103 µg/L	100 µg/L	103	60.0	140	---

Sub-Matrix: Water

					Matrix Spike (MS) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Spike		Recovery (%)	Recovery Limits (%)		Qualifier	
					Concentration	Target		Low	High		
Volatile Organic Compounds (QC Lot: 1844910) - continued											
HA2500148-001	Anonymous	Dichloroethylene, cis-1,2-	156-59-2	E611D	110 µg/L	100 µg/L	110	60.0	140	---	
		Dichloromethane	75-09-2	E611D	106 µg/L	100 µg/L	106	60.0	140	---	
		Dichloropropylene, trans-1,3-	10061-02-6	E611D	100 µg/L	100 µg/L	100	60.0	140	---	
		Ethylbenzene	100-41-4	E611D	96.9 µg/L	100 µg/L	96.9	60.0	140	---	
		Methyl ethyl ketone [MEK]	78-93-3	E611D	89 µg/L	100 µg/L	89.4	60.0	140	---	
		Styrene	100-42-5	E611D	99.3 µg/L	100 µg/L	99.3	60.0	140	---	
		Tetrachloroethane, 1,1,2,2-	79-34-5	E611D	95.2 µg/L	100 µg/L	95.2	60.0	140	---	
		Tetrachloroethylene	127-18-4	E611D	102 µg/L	100 µg/L	102	60.0	140	---	
		Toluene	108-88-3	E611D	106 µg/L	100 µg/L	106	60.0	140	---	
		Trichloroethylene	79-01-6	E611D	106 µg/L	100 µg/L	106	60.0	140	---	
		Xylene, m+p-	179601-23-1	E611D	196 µg/L	200 µg/L	98.0	60.0	140	---	
		Xylene, o-	95-47-6	E611D	95.9 µg/L	100 µg/L	95.9	60.0	140	---	
Nonylphenols (QC Lot: 1844715)											
WT2500721-001	Anonymous	Nonylphenol [NP]	84852-15-3	E749A	8.93 µg/L	10 µg/L	89.3	50.0	140	---	
Nonylphenols (QC Lot: 1844716)											
WT2500721-001	Anonymous	Nonylphenol diethoxylate [NP2EO]	20427-84-3	E749B	2.05 µg/L	2 µg/L	103	50.0	140	---	
		Nonylphenol monoethoxylate [NP1EO]	27986-36-3	E749B	6.76 µg/L	10 µg/L	67.6	50.0	140	---	

B-172 MM-586 066-~~87~~
 BC-476 CN-545 185
 N-542 L-076
 OR-032 VN-149
 www.alsglobal.com

Chain of Custody (COC) / Analytical Request Form

COC Number: 23 - 1105097

Page of

Canada Toll Free: 1 800 668 9878

Environmental Division
Waterloo

Work Order Reference
WT2500943

Telephone: +1 519 866 6910

SAMPLES ON HOLD
EXTENDED STORAGE REQUIR
SUSPECTED HAZARD (see note)

Report To		Contact and company name below will appear on the final report			Reports / Recipients		Turnaround Time (TAT) Requested	
Company:	Fisher Engineering			Select Report Format:	<input checked="" type="checkbox"/> PDF <input type="checkbox"/> EXCEL <input type="checkbox"/> EDD (DIGITAL)	<input checked="" type="checkbox"/> Routine [R] if received by 3pm M-F - no surcharges apply		
Contact:	Clive Vaughan			Merge QC/QCI Reports with COA	<input type="checkbox"/> YES <input type="checkbox"/> NO <input type="checkbox"/> N/A	4 day [P4] if received by 3pm M-F - 20% rush surcharge minimum		
Phone:	905-475-7735			<input type="checkbox"/> Compare Results to Criteria on Report - provide details below if box checked	3 day [P3] if received by 3pm M-F - 25% rush surcharge minimum			
Company address below will appear on the final report					Select Distribution:	<input checked="" type="checkbox"/> EMAIL <input type="checkbox"/> MAIL <input type="checkbox"/> FAX	2 day [P2] if received by 3pm M-F - 50% rush surcharge minimum	
Street:	15400 Kingston Park Dr			Email 1 or Fax	1 day [E] if received by 3pm M-F - 100% rush surcharge minimum			
City/Province:	Markham, ON			Clive@Fishereng.com	Same day [E2] if received by 10am M-S - 200% rush surcharge.			
Postal Code:	L3R 3K2			Email 2	Additional fees may apply to rush requests on weekends.			
Invoice To	Same as Report To <input type="checkbox"/> YES <input type="checkbox"/> NO		Email 3			Data and Time Required for all E&P TATs:		
	Copy of Invoice with Report <input type="checkbox"/> YES <input type="checkbox"/> NO		Invoice Recipients			For all tests with rush TATs requested, please list		
Company:			Select Invoice Distribution:	<input type="checkbox"/> EMAIL <input type="checkbox"/> MAIL <input type="checkbox"/> FAX	Analysis Req			
Contact:			Email 1 or Fax				Indicate Filtered (F), Preserved (P) or Filtered and P.	
Project Information				Oil and Gas Required Fields (client use)				
ALS Client Code / QUOTE #:				AFE/Cost Center:	PO#			
Job / Project #:				Major/Minor Code:	Routing Code:			
PO / AFE:				Requisitioner:				
LSD:				Location:				
ALS Lab Work Order # (ALS use only): WT2500943				ALS Contact: F. Hansen	Sampler: Nnamdi	NUMBER OF CONTAINERS	Durham Sewer discharge bylaws (Sanitary x Storm) MW 104 (Unfiltered)	
ALS Sample # (ALS use only)	Sample Identification and/or Coordinates (This description will appear on the report)			Date (dd-mm-yy): 16/01/25	Time (hh:mm): GW			
375 Kingston Road Pickering Durham Sewer discharge bylaws (Sanitary x Storm) MW 104 (Unfiltered)								
Drinking Water (DW) Samples ¹ (client use)				Notes / Specify Limits for result evaluation by selecting from drop-down below (Excel COC only)			SAMPLE RECEIPT DETAILS (ALS use only)	
Are samples taken from a Regulated DW System? <input type="checkbox"/> YES <input checked="" type="checkbox"/> NO							Cooling Method: <input type="checkbox"/> NONE <input type="checkbox"/> ICE <input checked="" type="checkbox"/> ICE PACKS <input type="checkbox"/> FROZEN <input type="checkbox"/> COOLING INITIATED	
Are samples for human consumption/ use? <input type="checkbox"/> YES <input checked="" type="checkbox"/> NO							Cooler Custody Seals Intact: <input type="checkbox"/> YES <input checked="" type="checkbox"/> N/A Sample Custody Seals Intact: <input type="checkbox"/> YES <input checked="" type="checkbox"/> N/A	
							INITIAL COOLER TEMPERATURES °C: 9.6 FINAL COOLER TEMPERATURES °C: 0.6	
SHIPMENT RELEASE (client use)				INITIAL SHIPMENT RECEIPTION (ALS use only)			FINAL SHIPMENT RECEIPTION (ALS use only)	
Released by: Nnamdi	Date: 16/01/25	Time:	Received by: P	Date: Jan 16/25	Time: 3:29	Received by: P	Date: Jan 17/25	Time: 1045

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION

WHITE - LABORATORY COPY YELLOW - CLIENT COPY

JAN 2023 FRONT

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

APPENDIX E – HYDRAULIC CONDUCTIVITY ANALYSES

F i s h e r E n g i n e e r i n g L i m i t e d

Project No. FH24-14411_V2 March 7, 2025

HYDRAULIC CONDUCTIVITY ANALYSIS

Location: 375 - 417 Kingston Rd, Pickering

Project: FH 24-14411

Test Date: 1/15/2025

Tested by: NE

Well No. MW101

<i>Equilibrium Water level (from top of pipe) HE</i>	<i>338 cm</i>
<i>Initial Water level (from top of pipe) Ho</i>	<i>558 cm</i>
<i>Monitoring well inner Dia D</i>	<i>0.05 m</i>
<i>Initial Time offset To</i>	<i>1 second</i>
<i>Reverse of Luthin's reference system Ru = Ho - HE</i>	<i>220.00 cm</i>
<i>Slope of Log((ho-he)/(ht-he)) / T</i>	<i>6.00E-06</i>
<i>G = Ru / (HT - HE)</i>	

Hydraulic conductivity computed k = 0.0000091 cm/s
9.08E-08 m/s
0.008 m/day

Time (Interval s)	HT (Water Drop)			G	LOG (G)
	(Elapsed s)	(m)	(cm)		
	0	5.580	558.0		
10	10	5.575	557.5	1.00228	0.00099
10	20	5.57	557.0	1.00457	0.00198
10	30	5.565	556.5	1.00686	0.00297
10	40	5.56	556.0	1.00917	0.00397
10	50	5.55	555.0	1.01382	0.00596
10	60	5.54	554.0	1.01852	0.00797
30	90	5.52	552.0	1.02804	0.01201
30	120	5.51	551.0	1.03286	0.01404
30	150	5.5	550.0	1.03774	0.01609
30	180	5.49	549.0	1.04265	0.01814
30	210	5.48	548.0	1.04762	0.02020
30	240	5.475	547.5	1.05012	0.02124
30	270	5.47	547.0	1.05263	0.02228
30	300	5.465	546.5	1.05516	0.02332
30	330	5.46	546.0	1.05769	0.02436
30	360	5.45	545.0	1.06280	0.02645
300	660	5.43	543.0	1.07317	0.03067

Location: 375 - 417 Kingston Rd, Pickering

Project: FH 24-14411

Test Date: 1/15/2025

Tested by: NE

Well No. MW101

HYDRAULIC CONDUCTIVITY ANALYSIS

Location: 375 - 417 Kingston Rd, Pickering

Project: FH 24-14411

Test Date: 1/22/2025

Tested by: NE

Well No. MW103

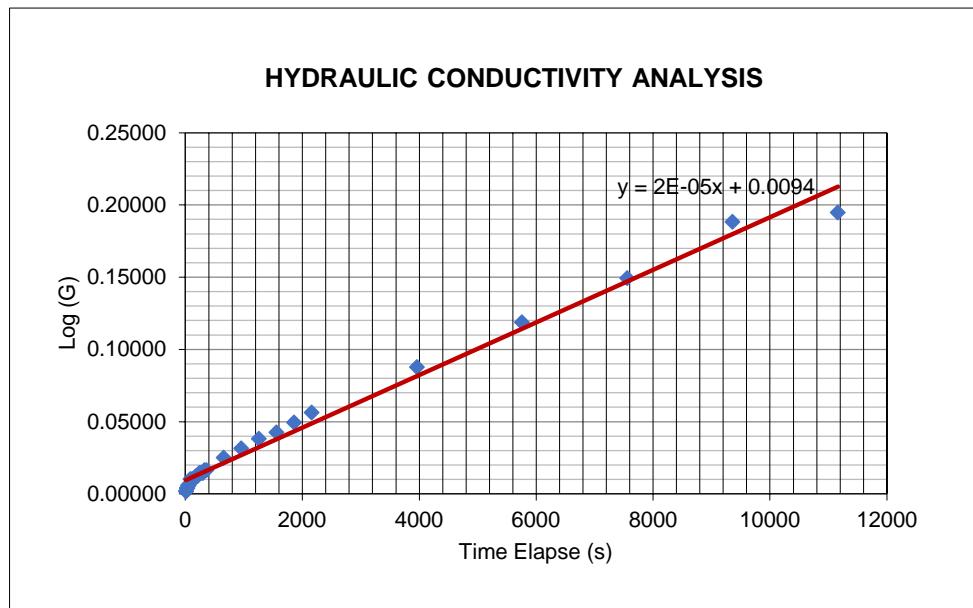
<i>Equilibrium Water level (from top of pipe) HE</i>	145 cm
<i>Initial Water level (from top of pipe) Ho</i>	358 cm
<i>Monitoring well inner Dia D</i>	0.05 m
<i>Initial Time offset To</i>	1 second
<i>Reverse of Luthin's reference system Ru = Ho - HE</i>	213.00 cm
<i>Slope of Log((ho-he)/(ht-he)) / T</i>	2.00E-05
<i>G = Ru / (HT - HE)</i>	

Hydraulic conductivity computed k = **0.0000303 cm/s**

3.03E-07 m/s

0.026 m/day

Time (Interval s)	HT (Water Drop)			G	LOG (G)
	(Elapsed s)	(m)	(cm)		
	0	3.580			
10	10	3.57	357.0	1.00472	0.00204
10	20	3.57	357.0	1.00472	0.00204
10	30	3.56	356.0	1.00948	0.00410
10	40	3.56	356.0	1.00948	0.00410
10	50	3.55	355.0	1.01429	0.00616
10	60	3.55	355.0	1.01429	0.00616
30	90	3.53	353.0	1.02404	0.01032
30	120	3.53	353.0	1.02404	0.01032
30	150	3.53	353.0	1.02404	0.01032
30	180	3.52	352.0	1.02899	0.01241
30	210	3.52	352.0	1.02899	0.01241
30	240	3.51	351.0	1.03398	0.01451
30	270	3.51	351.0	1.03398	0.01451
30	300	3.51	351.0	1.03398	0.01451
30	330	3.5	350.0	1.03902	0.01663
30	360	3.5	350.0	1.03902	0.01663
300	660	3.46	346.0	1.05970	0.02518
300	960	3.43	343.0	1.07576	0.03171
300	1260	3.4	340.0	1.09231	0.03834
300	1560	3.38	338.0	1.10363	0.04282
300	1860	3.35	335.0	1.12105	0.04963
300	2160	3.32	332.0	1.13904	0.05654
1800	3960	3.19	319.0	1.22414	0.08783
1800	5760	3.07	307.0	1.31481	0.11886
1800	7560	2.96	296.0	1.41060	0.14940
1800	9360	2.83	283.0	1.54348	0.18850
1800	11160	2.810	281.0	1.56618	0.19484


Location: 375 - 417 Kingston Rd, Pickering

Project: FH 24-14411

Test Date: 1/22/2025

Tested by: NE

Well No. MW103

FISHER ENGINEERING

HYDRAULIC CONDUCTIVITY ANALYSIS

Location: 375 - 417 Kingston Rd, Pickering

Project: FH 24-14411

Test Date: 1/15/2025

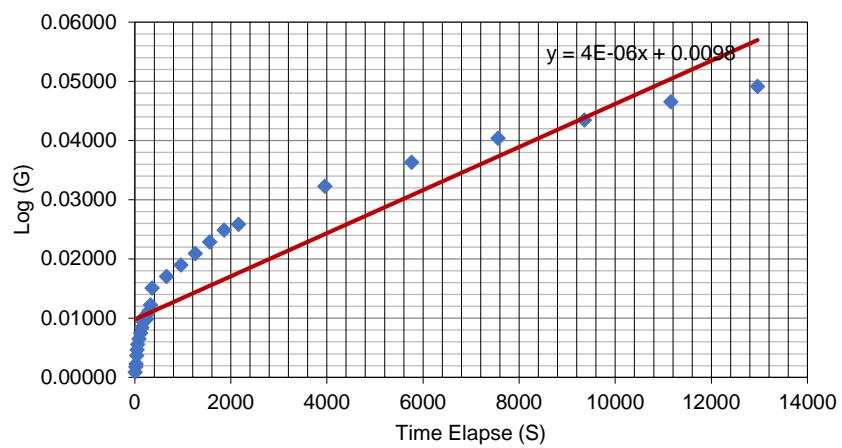
Tested by: NE

Well No. **MW104**

Equilibrium Water level (from top of pipe) HE	103 cm
Initial Water level (from top of pipe) Ho	570 cm
Monitoring well inner Dia D	0.05 m
Initial Time offset To	1 second
Reverse of Luthin's reference system Ru = Ho - HE	467.00 cm
Slope of Log((ho-he)/(ht-he)) / T	4.00E-06
G = Ru / (HT - HE)	

Hydraulic conductivity computed k = 0.0000061 cm/s
6.05E-08 m/s
0.005 m/day

Time (Interval s)	HT (Water Drop)			G	LOG (G)
(Elapsed s)	(m)	(cm)			
	0	5.7			
10	10	5.690	569.0	1.00215	0.00093
10	20	5.680	568.0	1.00430	0.00186
10	30	5.675	567.5	1.00538	0.00233
10	40	5.660	566.0	1.00864	0.00374
10	50	5.650	565.0	1.01082	0.00467
10	60	5.640	564.0	1.01302	0.00562
30	90	5.630	563.0	1.01522	0.00656
30	120	5.620	562.0	1.01743	0.00750
30	150	5.610	561.0	1.01965	0.00845
30	180	5.600	560.0	1.02188	0.00940
30	210	5.590	559.0	1.02412	0.01035
30	240	5.595	559.5	1.02300	0.00988
30	270	5.585	558.5	1.02525	0.01083
30	300	5.580	558.0	1.02637	0.01131
30	330	5.570	557.0	1.02863	0.01226
30	360	5.540	554.0	1.03548	0.01514
300	660	5.520	552.0	1.04009	0.01707
300	960	5.500	550.0	1.04474	0.01901
300	1260	5.480	548.0	1.04944	0.02096
300	1560	5.460	546.0	1.05418	0.02291
300	1860	5.440	544.0	1.05896	0.02488
300	2160	5.430	543.0	1.06136	0.02586
1800	3960	5.365	536.5	1.07728	0.03233
1800	5760	5.325	532.5	1.08731	0.03635
1800	7560	5.285	528.5	1.09753	0.04042
1800	9360	5.255	525.5	1.10533	0.04349
1800	11160	5.225	522.5	1.11323	0.04658
1800	12960	5.200	520.0	1.11990	0.04918


Location: 375 - 417 Kingston Rd, Pickering

Project: FH 24-14411

Test Date: 1/15/2025

Tested by: NE

Well No. MW104

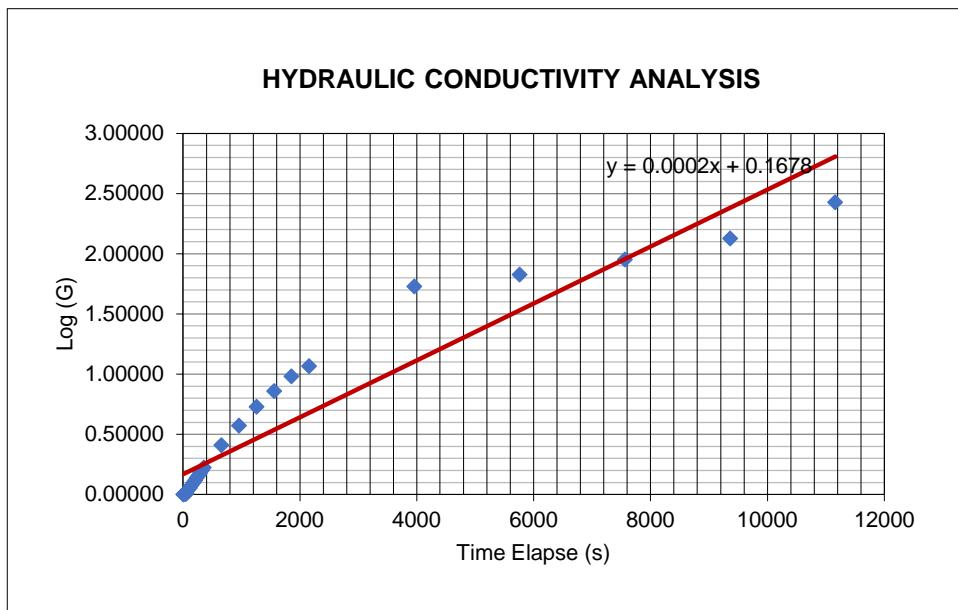
HYDRAULIC CONDUCTIVITY ANALYSIS

Location: 375 - 417 Kingston Rd, Pickering**Project:** FH 24-14411**Test Date:** 1/22/2025**Tested by:** NE**Well No.** MW106

<i>Equilibrium Water level (from top of pipe) HE</i>	205 cm
<i>Initial Water level (from top of pipe) Ho</i>	474 cm
<i>Monitoring well inner Dia D</i>	0.05 m
<i>Initial Time offset To</i>	1 second
<i>Reverse of Luthin's reference system Ru = Ho - HE</i>	269.00 cm
<i>Slope of Log((ho-he)/(ht-he)) / T</i>	2.00E-04
<i>G = Ru / (HT - HE)</i>	

Hydraulic conductivity computed $k =$ **0.0003027 cm/s**
3.03E-06 m/s
0.261 m/day

Time (Interval s)	HT (Water Drop)			G	LOG (G)
	(Elapsed s)	(m)	(cm)		
	0	4.740			
10	10	4.72	472.0	1.00749	0.00324
10	20	4.71	471.0	1.01128	0.00487
10	30	4.7	470.0	1.01509	0.00651
10	40	4.69	469.0	1.01894	0.00815
10	50	4.68	468.0	1.02281	0.00980
10	60	4.67	467.0	1.02672	0.01145
30	90	4.51	451.0	1.09350	0.03882
30	120	4.41	441.0	1.13983	0.05684
30	150	4.29	429.0	1.20089	0.07950
30	180	4.19	419.0	1.25701	0.09934
30	210	4.09	409.0	1.31863	0.12012
30	240	4	400.0	1.37949	0.13972
30	270	3.9	390.0	1.45405	0.16258
30	300	3.81	381.0	1.52841	0.18424
30	330	3.73	373.0	1.60119	0.20444
30	360	3.65	365.0	1.68125	0.22563
300	660	3.09	309.0	2.58654	0.41272
300	960	2.77	277.0	3.73611	0.57242
300	1260	2.55	255.0	5.38000	0.73078
300	1560	2.42	242.0	7.27027	0.86155
300	1860	2.33	233.0	9.60714	0.98259
300	2160	2.28	228.0	11.69565	1.06802
1800	3960	2.10	210.0	53.80000	1.73078
1800	5760	2.09	209.0	67.25000	1.82769
1800	7560	2.08	208.0	89.66667	1.95263
1800	9360	2.07	207.0	134.50000	2.12872
1800	11160	2.060	206.0	269.00000	2.42975


Location: 375 - 417 Kingston Rd, Pickering

Project: FH 24-14411

Test Date: 1/22/2025

Tested by: NE

Well No. MW106

HYDRAULIC CONDUCTIVITY ANALYSIS

Location: 375 - 417 Kingston Rd, Pickering

Project: FH 24-14411

Test Date: 1/22/2025

Tested by: NE

Well No. MW107

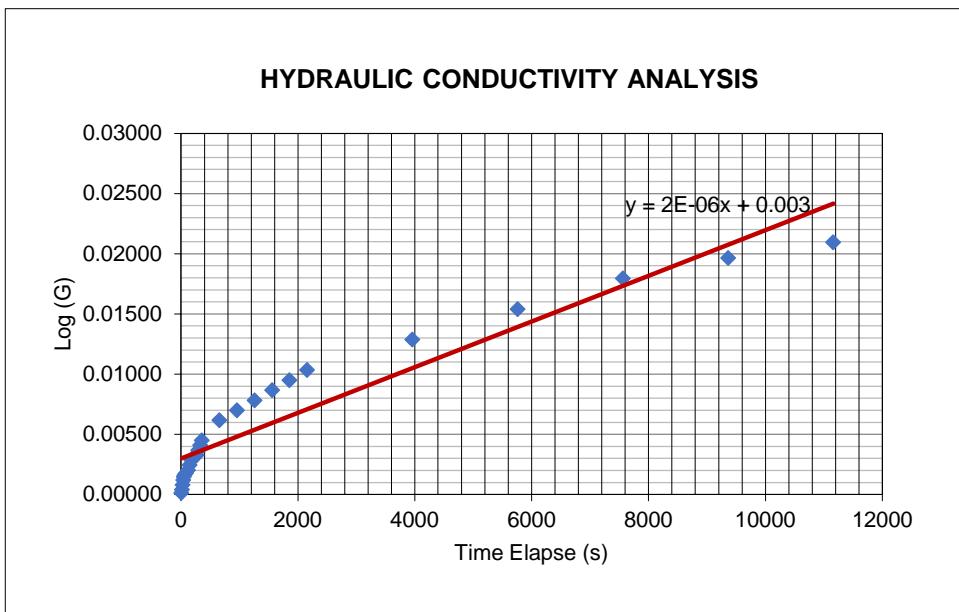
<i>Equilibrium Water level (from top of pipe) HE</i>	179 cm
<i>Initial Water level (from top of pipe) Ho</i>	709.5 cm
<i>Monitoring well inner Dia D</i>	0.05 m
<i>Initial Time offset To</i>	1 second
<i>Reverse of Luthin's reference system Ru = Ho - HE</i>	530.50 cm
<i>Slope of Log((ho-he)/(ht-he)) / T</i>	2.00E-06
<i>G = Ru / (HT - HE)</i>	

Hydraulic conductivity computed k = **0.0000030 cm/s**

3.03E-08 m/s

0.003 m/day

Time (Interval s)	HT (Water Drop)			G	LOG (G)
	(Elapsed s)	(m)	(cm)		
	0	7.095			
10	10	7.093	709.3	1.00038	0.00016
10	20	7.090	709.0	1.00094	0.00041
10	30	7.085	708.5	1.00189	0.00082
10	40	7.080	708.0	1.00284	0.00123
10	50	7.077	707.7	1.00340	0.00148
10	60	7.075	707.5	1.00378	0.00164
30	90	7.073	707.3	1.00416	0.00180
30	120	7.070	707.0	1.00473	0.00205
30	150	7.065	706.5	1.00569	0.00246
30	180	7.060	706.0	1.00664	0.00287
30	210	7.058	705.8	1.00702	0.00304
30	240	7.056	705.6	1.00741	0.00320
30	270	7.055	705.5	1.00760	0.00329
30	300	7.050	705.0	1.00856	0.00370
30	330	7.045	704.5	1.00951	0.00411
30	360	7.040	704.0	1.01048	0.00453
300	660	7.020	702.0	1.01434	0.00618
300	960	7.010	701.0	1.01628	0.00701
300	1260	7.000	700.0	1.01823	0.00785
300	1560	6.990	699.0	1.02019	0.00868
300	1860	6.980	698.0	1.02216	0.00952
300	2160	6.970	697.0	1.02413	0.01036
1800	3960	6.940	694.0	1.03010	0.01288
1800	5760	6.910	691.0	1.03613	0.01542
1800	7560	6.880	688.0	1.04224	0.01797
1800	9360	6.860	686.0	1.04635	0.01968
1800	11160	6.845	684.5	1.04946	0.02096


Location: 375 - 417 Kingston Rd, Pickering

Project: FH 24-14411

Test Date: 1/22/2025

Tested by: NE

Well No. MW107

HYDRAULIC CONDUCTIVITY ANALYSIS

Location: 375 - 417 Kingston Rd, Pickering

Project: FH 24-14411

Test Date: 1/15/2025

Tested by: NE

Well No. MW108

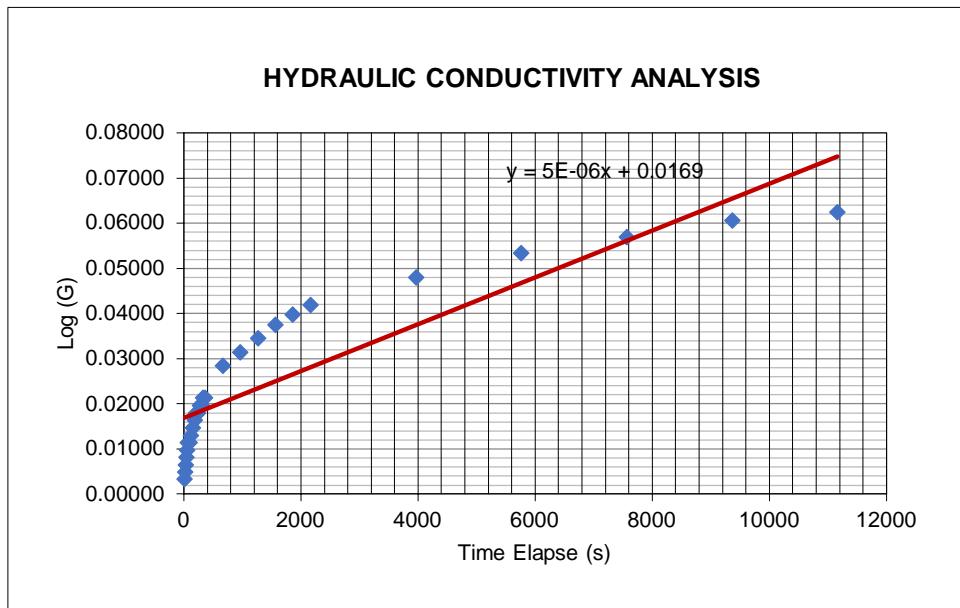
<i>Equilibrium Water level (from top of pipe) HE</i>	134 cm
<i>Initial Water level (from top of pipe) Ho</i>	407 cm
<i>Monitoring well inner Dia D</i>	0.05 m
<i>Initial Time offset To</i>	1 second
<i>Reverse of Luthin's reference system Ru = Ho - HE</i>	273.00 cm
<i>Slope of Log((ho-he)/(ht-he)) / T</i>	5.00E-06
<i>G = Ru / (HT - HE)</i>	

Hydraulic conductivity computed k = **0.0000076 cm/s**

7.57E-08 m/s

0.007 m/day

Time (Interval s)	HT (Water Drop)			G	LOG (G)
	(Elapsed s)	(m)	(cm)		
	0	4.070	407.0		
10	10	4.050	405.0	1.00738	0.00319
10	20	4.040	404.0	1.01111	0.00480
10	30	4.030	403.0	1.01487	0.00641
10	40	4.020	402.0	1.01866	0.00803
10	50	4.010	401.0	1.02247	0.00965
10	60	4.000	400.0	1.02632	0.01128
30	90	4.000	400.0	1.02632	0.01128
30	120	3.990	399.0	1.03019	0.01292
30	150	3.980	398.0	1.03409	0.01456
30	180	3.970	397.0	1.03802	0.01621
30	210	3.960	396.0	1.04198	0.01786
30	240	3.960	396.0	1.04198	0.01786
30	270	3.950	395.0	1.04598	0.01952
30	300	3.950	395.0	1.04598	0.01952
30	330	3.940	394.0	1.05000	0.02119
30	360	3.940	394.0	1.05000	0.02119
300	660	3.898	389.8	1.06724	0.02826
300	960	3.880	388.0	1.07480	0.03133
300	1260	3.862	386.2	1.08247	0.03442
300	1560	3.845	384.5	1.08982	0.03735
300	1860	3.832	383.2	1.09551	0.03961
300	2160	3.820	382.0	1.10081	0.04171
1800	3960	3.785	378.5	1.11656	0.04788
1800	5760	3.755	375.5	1.13043	0.05325
1800	7560	3.735	373.5	1.13987	0.05686
1800	9360	3.715	371.5	1.14947	0.06050
1800	11160	3.705	370.5	1.15433	0.06233


Location: 375 - 417 Kingston Rd, Pickering

Project: FH 24-14411

Test Date: 1/15/2025

Tested by: NE

Well No. MW108

HYDRAULIC CONDUCTIVITY ANALYSIS

Location: 375 - 417 Kingston Rd, Pickering

Project: FH 24-14411

Test Date: 1/22/2025

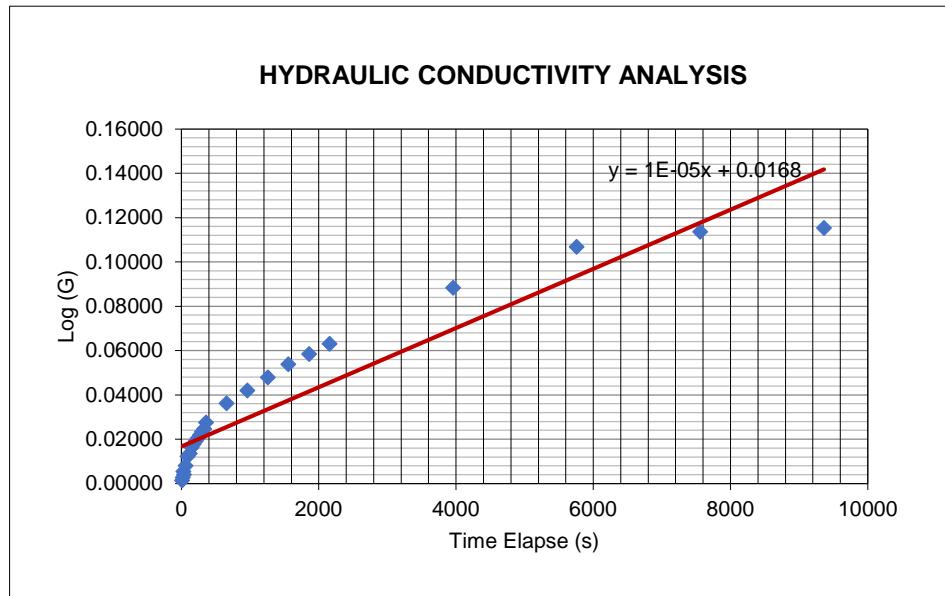
Tested by: NE

Well No. MW110

Equilibrium Water level (from top of pipe) HE	190 cm
Initial Water level (from top of pipe) Ho	353 cm
Monitoring well inner Dia D	0.05 m
Initial Time offset To	1 second
Reverse of Luthin's reference system Ru = Ho - HE	163.00 cm
Slope of Log((ho-he)/(ht-he)) / T	1.00E-05
G = Ru / (HT - HE)	

Hydraulic conductivity computed k = 0.0000151 cm/s
1.51E-07 m/s
0.013 m/day

Time (Interval s)	HT (Water Drop)			G	LOG (G)
	(Elapsed s)	(m)	(cm)		
	0	3.530	353.0		
10	10	3.525	352.5	1.00308	0.00133
10	20	3.520	352.0	1.00617	0.00267
10	30	3.510	351.0	1.01242	0.00536
10	40	3.515	351.5	1.00929	0.00402
10	50	3.550	355.0	0.98788	-0.00530
10	60	3.500	350.0	1.01875	0.00807
30	90	3.485	348.5	1.02839	0.01216
30	120	3.480	348.0	1.03165	0.01353
30	150	3.470	347.0	1.03822	0.01629
30	180	3.465	346.5	1.04153	0.01767
30	210	3.460	346.0	1.04487	0.01906
30	240	3.455	345.5	1.04823	0.02046
30	270	3.450	345.0	1.05161	0.02186
30	300	3.445	344.5	1.05502	0.02326
30	330	3.440	344.0	1.05844	0.02467
30	360	3.430	343.0	1.06536	0.02750
300	660	3.400	340.0	1.08667	0.03610
300	960	3.380	338.0	1.10135	0.04193
300	1260	3.360	336.0	1.11644	0.04783
300	1560	3.340	334.0	1.13194	0.05383
300	1860	3.325	332.5	1.14386	0.05837
300	2160	3.310	331.0	1.15603	0.06297
1800	3960	3.230	323.0	1.22556	0.08834
1800	5760	3.175	317.5	1.27843	0.10668
1800	7560	3.155	315.5	1.29880	0.11354
1800	9360	3.150	315.0	1.30400	0.11528


Location: 375 - 417 Kingston Rd, Pickering

Project: FH 24-14411

Test Date: 1/22/2025

Tested by: NE

Well No. MW110

APPENDIX F – DEWATERING RATES

F i s h e r E n g i n e e r i n g L i m i t e d

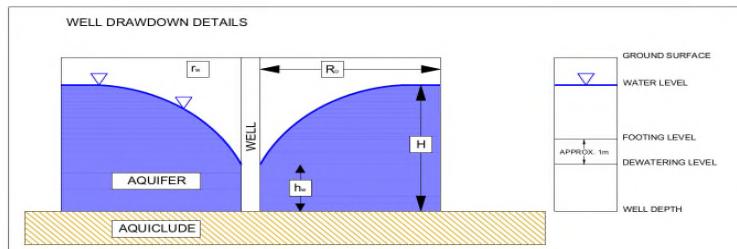
Project No. FH24-14411_V2 March 7, 2025

Location: 375 - 417 Kingston Rd, Pickering
 Project: FH 24-14411
 Date: 2/6/2025

Dupuit Forchheimer for Radial Flow to a Closely Wedged System or Excavation

Construction Units	Finished lowest floor elevation (m asl)	Average grade (m asl)	Lowest Footing Elevation (m asl)	Required Dewatering Elevation (m asl)	Static water level		Well base elevation (m)	H (m)	h_w (m)	H-h_w (m)	R_0 (m)		r_w	ab (m ²)	K (m/s)	H ² h_w ²	lnR_0	lnr_w	Q_e (m ³ /s)	Q_d (m ³ /day)
					BGS (m)	Elevation (m asl)					Model	Adjusted								
PHASE 1 - 31 & 32 Storeys with 2 UG levels	96.01	103.51	94.81	93.81	2.24	101.27	93.56	7.71	0.3	7.46	16.35	52.04	35.69	4001	5.34E-07	59.38	3.95	3.57	2.64E-04	22.81
PHASE 2 - 32 & 33 Storeys with 2 UG levels	99.67	106.17	98.47	97.47	2.71	103.46	97.22	6.24	0.3	5.99	13.13	51.95	38.82	4734	5.34E-07	38.88	3.95	3.66	2.24E-04	19.34

Dupuit Forchheimer Equation


$$Q = \frac{\pi K(H^2 - h_w^2)}{\ln R_0 - \ln r_w}$$

Equivalent radius of well, r_w

$$r_w = \sqrt{\frac{ab}{\pi}}$$

Radius of influence in m, calculated from Sichardt's equation

$$R_0 = 3000(H - h_w)\sqrt{k}$$

Where:

r_w = equivalent radius of the well in m,

H = hydraulic head of the original water table (total saturated aquifer thickness) in m,

h_w = hydraulic head at maximum dewatering (proposed drawdown) in m,

R_0 = radius of influence in m, calculated from Sichardt's equation, and

K = hydraulic conductivity, in m/s

a = length of excavation area in m

b = width of excavation area in m

Permanent Drainage

Location: 375 - 417 Kingston Rd, Pickering

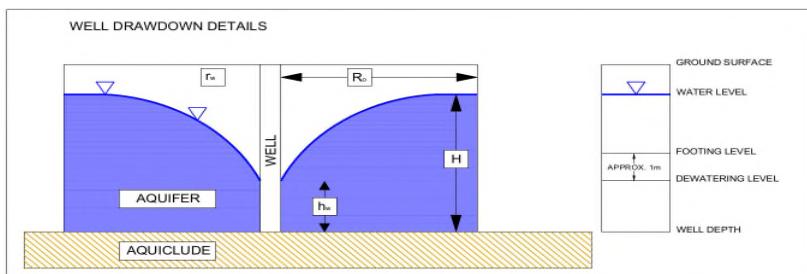
Project: FH 24-14411

Date: 2/6/2025

Dupuit Forchheimer for Radial Flow to a Closely Wedged System or Excavation

Construction Units	Finished lowest floor elevation (m asl)	Average grade (m asl)	Lowest Footing Elevation (m asl)	Required Dewatering Elevation (m asl)	Static water level		Well base elevation (m)	H (m)	h_w (m)	H-h_w (m)	R_0 (m)		r_w	ab (m²)	K (m/s)	H²-h_w²	lnR_0	lnr_w	Q_r (m³/s)	Q_d (m³/day)
					BGS (m)	Elevation (m asl)					Model	Adjusted								
PHASE 1 - 31 & 32 Storeys with 2 UG levels	96.01	103.51	94.81	95.71	1.42	102.09	95.56	6.53	0.2	6.38	13.98	49.67	35.69	4001	5.34E-07	42.59	3.91	3.57	2.16E-04	18.67
PHASE 2 - 32 & 33 Storeys with 2 UG levels	99.67	106.17	98.47	99.37	1.42	104.74	99.22	5.53	0.2	5.38	11.79	50.61	38.82	4734	5.34E-07	30.53	3.92	3.66	1.93E-04	16.69

Dupuit Forchheimer Equation


$$Q = \frac{\pi K (H^2 - h_w^2)}{\ln R_0 - \ln r_w}$$

Equivalent radius of well, r_w

$$r_w = \sqrt{\frac{ab}{\pi}}$$

Radius of influence in m,
calculated from Sichardt's equation

$$R_0 = 3000(H - h_w)\sqrt{k}$$

Where:

r_w = equivalent radius of the well in m,

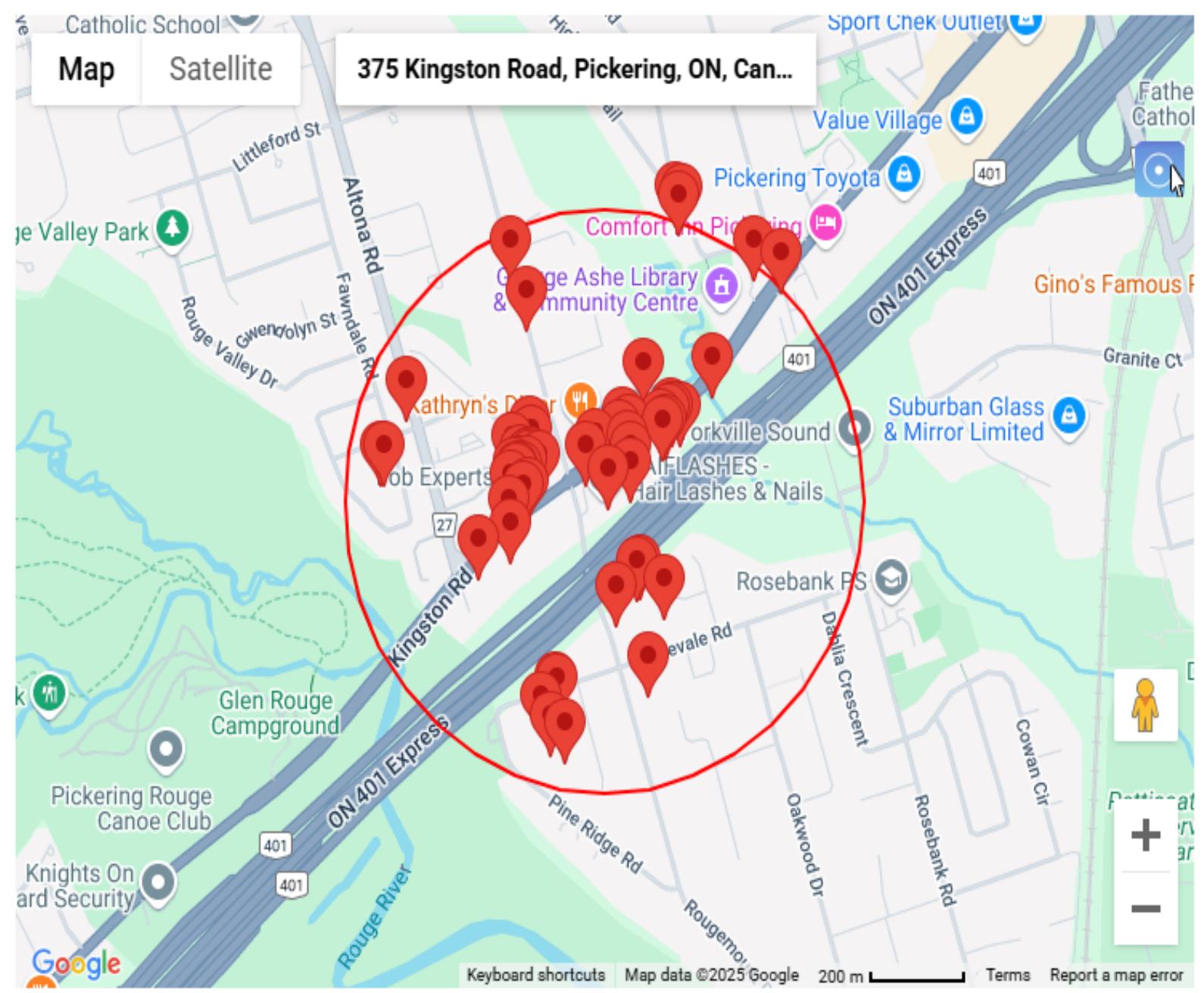
H = hydraulic head of the original water table (total saturated aquifer thickness) in m,

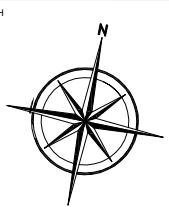
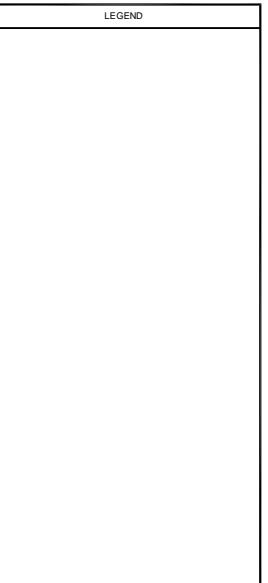
h_w = hydraulic head at maximum dewatering (proposed drawdown) in m,

R_0 = radius of influence in m, calculated from Sichardt's equation, and

K = hydraulic conductivity, in m/s

a = length of excavation area in m


b = width of excavation area in m



APPENDIX G – WELL RECORDS

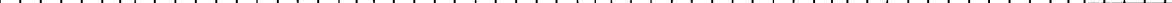
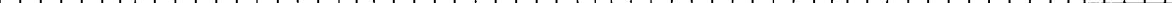
F i s h e r E n g i n e e r i n g L i m i t e d

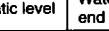
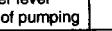
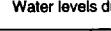
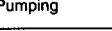
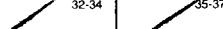
Project No. FH24-14411_V2 March 7, 2025

<p>FISHER ENGINEERING</p> <p>400 Esna Park Dr., #15 Markham, Ontario L3R 3K2</p> <p>Tel: 905 475-7755 Fax: 905 475-7718</p>	
<p>NORTH</p>	
<p>LEGEND</p>	
<p>PROJECT NAME AND ADDRESS HYDROGEOLOGICAL INVESTIGATION 375-417 Kingston Road, PICKERING, ONTARIO</p>	
<p>FIGURE G1: SITE LOCATION PLAN</p>	
<p>SHEET NO.</p>	
<p>PROJECT NO. FH24-14411</p>	
<p>DATE JANUARY 2025</p>	
<p>SCALE AS SHOWN</p>	

G1

Print only in spaces provided.
Mark correct box with a checkmark, where applicable.



11






1915420

Municipality Con.
1960S RANGE OF
10 14 15 22 23 24

County or District	Township/Borough/City/Town/Village	Con block tract survey etc.	25-27					
Durham	Pickering	Old Forest Rd	1415					
	Address	Date completed	48-53					
	20 Church St N Ajax On	8 11 01	day month year					
	Northing	RC	Elevation	RC	Basin Code	ii	iii	iv
21	U	T	I	H	J	K	L	M

LOG OF OVERRIDING AND BEDROCK MATERIALS (see instructions)

31
32

PUMPING TEST	Pumping test method		10	Pumping rate	11-14 GPM	Duration of pumping	15-16 Hours	17-18 Mins
	<input type="checkbox"/> Pump	<input type="checkbox"/> Bailer						
	Static level	Water level end of pumping	25	Water levels during		1 <input type="checkbox"/> Pumping	2 <input type="checkbox"/> Recovery	
	19-21 	22-24 		15 minutes 	30 minutes 	45 minutes 	60 minutes 	
	feet	feet	feet	feet	feet	feet	feet	feet
If flowing give rate		38-41 	Pump intake set at		Water at end of test			42
		GPM				<input type="checkbox"/> Clear	<input type="checkbox"/> Cloudy	
Recommended pump type		Recommended pump setting		43-45 	Recommended pump rate			46-49
<input type="checkbox"/> Shallow <input type="checkbox"/> Deep				feet				GPM
50-53								

FINAL STATUS OF WELL		54
1 <input type="checkbox"/> Water supply	5 <input type="checkbox"/> Abandoned, insufficient supply	9 <input type="checkbox"/> Unfinished
2 <input type="checkbox"/> Observation well	6 <input type="checkbox"/> Abandoned, poor quality	10 <input type="checkbox"/> Replacement well
3 <input type="checkbox"/> Test hole	7 <input checked="" type="checkbox"/> Abandoned (Other)	
4 <input type="checkbox"/> Recharge well	8 <input type="checkbox"/> Dewatering	

WATER USE			55-56
1 <input type="checkbox"/> Domestic 2 <input type="checkbox"/> Stock 3 <input type="checkbox"/> Irrigation 4 <input type="checkbox"/> Industrial	5 <input type="checkbox"/> Commercial 6 <input type="checkbox"/> Municipal 7 <input type="checkbox"/> Public supply 8 <input type="checkbox"/> Cooling & air conditioning	9 <input type="checkbox"/> Not use 10 <input type="checkbox"/> Other	

METHOD OF CONSTRUCTION 57		
1 <input type="checkbox"/> Cable tool	5 <input type="checkbox"/> Air percussion	9 <input type="checkbox"/> Driving
2 <input type="checkbox"/> Rotary (conventional)	6 <input type="checkbox"/> Boring	10 <input type="checkbox"/> Digging
3 <input type="checkbox"/> Rotary (reverse)	7 <input type="checkbox"/> Diamond	11 <input type="checkbox"/> Other _____
4 <input type="checkbox"/> Rotary (air)	8 <input type="checkbox"/> Jetting	

Name of Well Contractor <u>Freelance Boring, Drilling LTD</u>	Well Contractor's Licence No. <u>2214</u>
Address <u>1151 Zion Rd RR#2 Little Britain ON</u>	
Name of Well Technician <u>David Coburn</u>	Well Technician's Licence No. <u>T0279</u>
Signature of Technician/Contractor 	Submission date <u>14</u> day <u>01</u> mo. <u>VI</u> yr

LOCATION OF WELL

In diagram below show distances of well from road and lot line. Indicate north by arrow.

N

Kingston Rd

Picton Rd

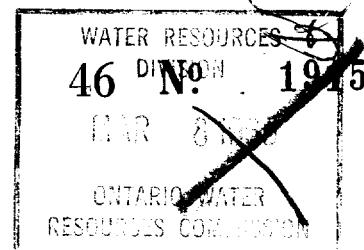
Rosebank

Well Behind House

240016

240016

MINISTRY USE ONLY	Data source	58	Contractor	59-62	Date received	63-68	69
			2214		NOV 20 2001		
Date of inspection		Inspector					
Remarks							


CD
UTM ~~1000000~~ 1000000 1000000
Elev. 1000000 1000000 1000000
Basin 24 1000000 1000000 1000000
County or District ONTARIO
Con. R. III

5 Wells
on this record

The Ontario Water Resources Commission Act

WATER WELL RECORD

Basin 24 ONTARIO

Township, Village, Town or City

PICKERING

Lot 31

Date completed

14 JUNE 1964

(day)

month

year)

dress

De Rouge Hill

Casing and Screen Record

Pumping Test

Inside diameter of casing 6 5/8
Total length of casing 218
Type of screen Casing
Length of screen POLLED
Depth to top of screen
Diameter of finished hole

Static level
Test-pumping rate 1 G.P.M.
Pumping level dry
Duration of test pumping
Water clear or cloudy at end of test
Recommended pumping rate
with pump setting of feet below ground surface

Well Log

Water Record

Overburden and Bedrock Record

From ft.	To ft.	Depth(s) at which water(s) found	Kind of water (fresh, salty, sulphur)
0	133		
133	138		
138	218		

GREY CLAY

" SHALE

NOTE

LIMESTONE

4 HOLES PLUS THIS RECORD APPROX 20' APART
FORMATION AND DEPTH ALL THE SAME
NO WATER ENCOUNTERED.

For what purpose(s) is the water to be used?

Location of Well

Is well on upland, in valley, or on hillside?

In diagram below show distances of well from road and lot line. Indicate north by arrow.

Drilling or Boring Firm

B. HUFFMAN & SONS.
2678 LAKE SHORE BLVD
TORONTO 14 MIMICO

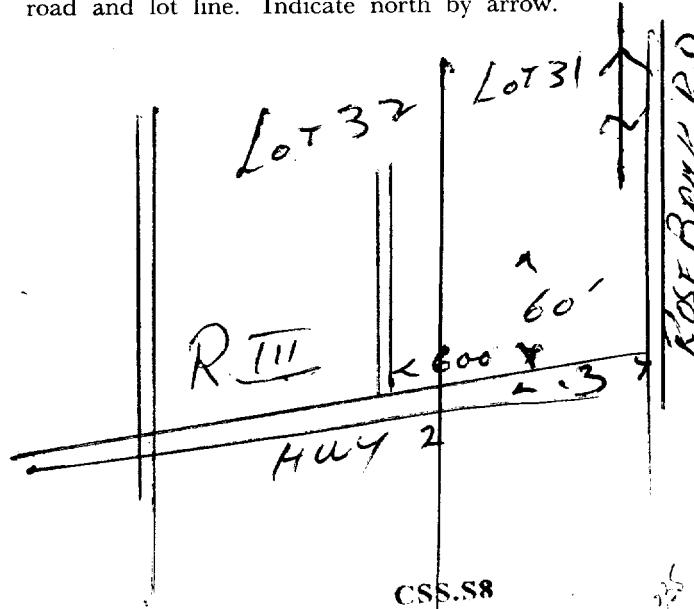
Licence Number

1448

Name of Driller or Borer

J. HUFFMAN

Address


TORONTO

Date

MARCH 2/65

(Signature of Licensed Drilling or Boring Contractor)

Form 7 15M-60-4188

UTM ~~B~~ ~~z~~ ~~15~~ ~~1~~ ~~1~~ ~~1~~ ~~E~~

46 N° 1016

5 R + 11 N

The Ontario Water Resources Commission Act

Elev. 5036

WATER WELL RECORDBasin 24 ~~1074~~

Ontario

lot. 31

Township, Village, Town or City

Con. 230 Range ~~III~~

Lot

17, Plan 230

Date completed

9

Sept

1967

Pickering

PICKERING ROUGE HILL

dress. 132 Confederation Dr.
on Rd Rouge Hill Ont**Casing and Screen Record**

Inside diameter of casing	6 1/4"
Total length of casing	102'
Type of screen	NIL
Length of screen	NIL
Depth to top of screen	NIL
Diameter of finished hole	6 1/4"

Static level	90'
Test-pumping rate	3
Pumping level	95'
Duration of test pumping	2 1/2"
Water clear or cloudy at end of test	Cloudy
Recommended pumping rate with pump setting of	2

feet below ground surface

Well Log

Overburden and Bedrock Record

Dugwell
Clay
Gravel

From ft.	To ft.	Depth(s) at which water(s) found	Kind of water (fresh, salty, sulphur)
0	40'		
40'	100'		
100'	102'	102'	fresh

For what purpose(s) is the water to be used?

house

Location of Well

Is well on upland, in valley, or on hillside?

hilltop

In diagram below show distances of well from
road and lot line. Indicate north by arrow.

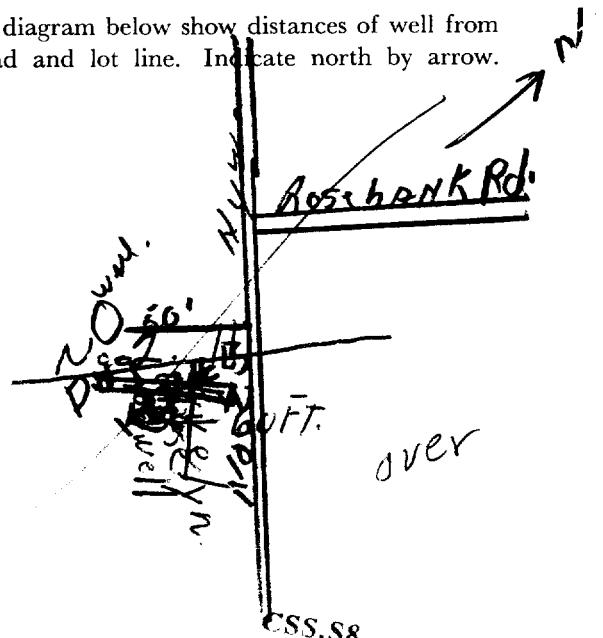
Drilling or Boring Firm

Gilbert

Address RR2 Baltimore

Licence Number 2618

Name of Driller or Borer Archie Langston


Address RR 5. Colongay

Date Sept 9 67

Signature of Licensed Drilling or Boring Contractor

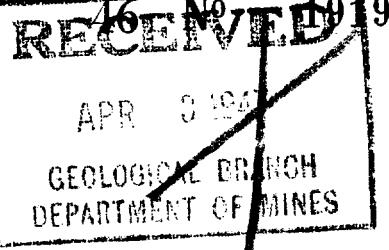
Form 7 15M-60-4138

OWRC COPY

UTM 1172 6150 340 E

9 R 48 53 120 N

Elev. 9 R 1035 ft


Range 111

Basin 27

Lot 32

ONTARIO

The Well Drillers Act
Department of Mines, Province of Ontario

Water Well Record

Part 1: Drilling
RANGE 111 Lot 32(?) approx.
Bush Trail Acres 18.48.50
including pump) 18.48.50

Pipe and Casing Record

Casing diameter(s) 6 in
Length(s) of casing(s) 204 ft.
Length of screen
Type of screen
Type of pump
Capacity of pump
Depth of pump setting

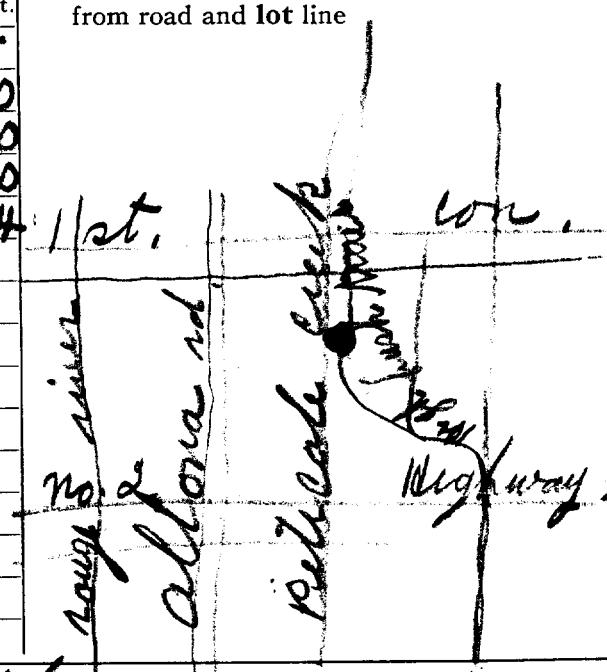
Date Mar 15 to 20
Developed Capacity 400 gal per hr.
Duration of Test 1 hr 4 times per day.
Pumping Rate 400 gal per hr.
Drawdown none
Static level of completed well 25 ft
Is well a gravel-wall type? gravel.

Pumping Test

Water Record
Kind (fresh or mineral) fresh
Quality (hard, soft, contains iron, sulphur etc.) hard.
Appearance (clear, cloudy, coloured) clear.
For what purpose(s) is the water to be used? Household
How far is well from possible source of contamination? —
What is source of contamination? —
Enclose a copy of any mineral analysis that has been made of water

Depth(s) to Water Horizon(s)	Kind of Water	No. of Feet Water Rises
105	dirty	25
204	clear	180

Well Log


Drift and Bedrock Record

1. drift & boulders.
2. sand & fine gravel.
3. blue clay & small stones
4. quick sand.
5. coarse sand
6. gravel.

From	To
0 ft.	100 ft.
100	105
105	160
160	190
190	200
200	204

Location of Well

In diagram below show distances of well from road and lot line

Situation: Is well on upland, in valley, or on hillside? Hillside

Drilling Firm E. R. W. Ludwig

Address R.R. 1, Locust Hill.

Recorded by Address

Date Licence Number 124

UTM [] [] [] [] [] [] E

46 No. 1921

5 R
ELEV. 5320370

The Ontario Water Resources Commission Act

WATER WELL RECORD

Basin 29 Ontario

Con. plan 228

Lot 2132

Township, Village, Town or City

PICKERIN G.

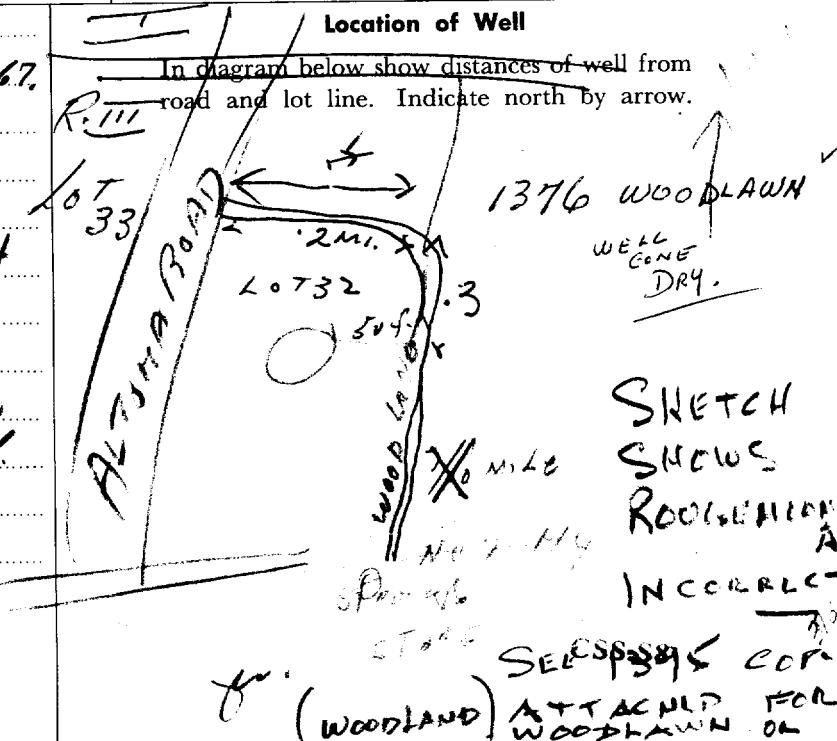
Date completed 17 MARCH 1967

44 (day) month year

ress. LAWRENCE AVE. E. TORONTO

APT 2.

Casing and Screen Record


Inside diameter of casing 6 1/4 INCHES
 Total length of casing 167
 Type of screen N.L
 Length of screen N.L
 Depth to top of screen N.L
 Diameter of finished hole 6 1/4"

Static level 75 feet from top
 Test-pumping rate 2 to 3 G.P.M.
 Pumping level 150 feet from top
 Duration of test pumping 4 hrs
 Water clear or cloudy at end of test cloudy
 Recommended pumping rate 2 G.P.M.
 with pump setting of 180 feet below ground surface

Well Log	Water Record			
Overburden and Bedrock Record	From ft.	To ft.	Depth(s) at which water(s) found	Kind of water (fresh, salty, sulphur)
dig well	0	30	202	a little
Clay & stones	30	63		
fine dry gravel	63	100	✓	sulphur
Clay & gravel coarse gravel	100	167		
Black soft rock	167	202		
finished in Rock at 202 feet				

For what purpose(s) is the water to be used? house

NOTE WELL WENT DRY - REMAINED IN OCT. 67.

Is well on upland, in valley, or on hillside? uplandDrilling or Boring Firm Noah GilbertAddress R.R. #2 Baltimore OntLicence Number 1826Name of Driller or Borer Goyal BhalapieAddress R.R. #20 Port Hope Ont.Date March 13/1967(Signature of Licensed Drilling or Boring Contractor) Noah Gilbert

UTM 11 Z 11 E

WATER RESOURCES

46 N. 1923

JAN 10 1966

ONTARIO WATER
RESOURCES COMMISSION

The Ontario Water Resources Commission Act

Elev. 5 R 0360

WATER WELL RECORD

Basin 24 OntarioCon. RANGE III Lot. LOT 33 Date completed 17 December 1965

10

day

month

year

Address Pickering, Ontario

Casing and Screen Record

Inside diameter of casing 6 5/8"
 Total length of casing
 Type of screen
 Length of screen
 Depth to top of screen
 Diameter of finished hole 6 5/8"

Pumping Test

Static level Dry Hole
 Test-pumping rate Some Water Found Within G.P.M.
 Pumping level 12' Of Surface With Smell
 Duration of test pumping of Gas
 Water clear or cloudy at end of test
 Recommended pumping rate feet below ground surface G.P.M.
 with pump setting of

Well Log

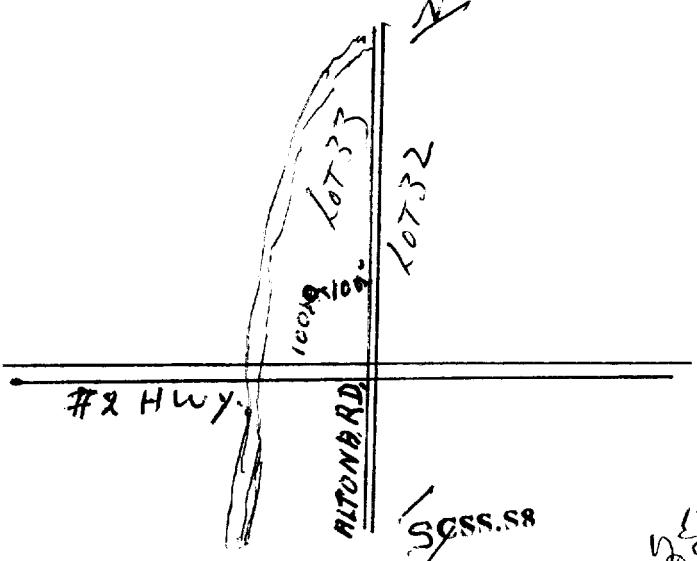
Overburden and Bedrock Record	From ft.	To ft.	Depth(s) at which water(s) found	Kind of water (fresh, salty, sulphur)
Black Sandy Soil	.0	.3		
Soft Clay With Gravel	.3	12		
Hard Packed Clay	12	43		
Hard Blue Clay	43	122		
Coal Tar	122	200		
<i>SHAL</i>				
<i>BLK SURF</i>				

For what purpose(s) is the water to be used? HouseDRYIs well on upland, in valley, or on hillside? Upland

Drilling or Boring Firm

Peter Spatuck
R.R.#3 Malton, Ontario

Address


Licence Number 1619Name of Driller or Borer Same

Address

Date January 8/66Peter Spatuck
(Signature of Licensed Drilling or Boring Contractor)

Location of Well

In diagram below show distances of well from road and lot line. Indicate north by arrow.

Well Owner's Information *Customer*

First Name **Rockhill** Last Name / Organization **Construction**

E-mail Address

Well Constructed
by Well Owner

Mailing Address (Street Number/Name)

301 Bradwick Dr unit B

Municipality

Province

Postal Code

Telephone No. (inc. area code)

ON

L4K 1K5

905 332 0606

Well Location

Address of Well Location (Street Number/Name)

10714 Old Forest Rd.

Township

Pickering

Lot

31

Concession

County/District/Municipality

Durham

City/Town/Village

Pickering

Province

Ontario

Postal Code

UTM Coordinates

Zone

Easting

NAD 83 117 6150 699 4852 903

Northing

Municipal Plan and Sublot Number

Other

Overburden and Bedrock Materials/Abandonment Sealing Record (see instructions on the back of this form)

General Colour	Most Common Material	Other Materials	General Description	Depth (m/ft) From	Depth (m/ft) To
			Decomposed soil 5 ft. Dia. Brick Lined dug well 14 ft deep static 5 ft		
			Bentonite Hole Plug /grout	14	12
			Clean clay fill and Bentonite quick grout	12	0

Note: Chlorinate and Pump standing water. Remove Pump lines and Upper Casing. Clean out debris. Hole Plug Cap.

Annular Space

Depth Set at (m/ft) From	To	Type of Sealant Used (Material and Type)	Volume Placed (m ³ /ft ³)
		See above	

Method of Construction

<input type="checkbox"/> Cable Tool	<input type="checkbox"/> Diamond	<input type="checkbox"/> Public	<input type="checkbox"/> Commercial	<input type="checkbox"/> Not used
<input type="checkbox"/> Rotary (Conventional)	<input type="checkbox"/> Jetting	<input type="checkbox"/> Domestic	<input type="checkbox"/> Municipal	<input type="checkbox"/> Dewatering
<input type="checkbox"/> Rotary (Reverse)	<input type="checkbox"/> Driving	<input type="checkbox"/> Livestock	<input type="checkbox"/> Test Hole	<input type="checkbox"/> Monitoring
<input type="checkbox"/> Boring	<input type="checkbox"/> Digging	<input type="checkbox"/> Irrigation	<input type="checkbox"/> Cooling & Air Conditioning	
<input type="checkbox"/> Air percussion		<input type="checkbox"/> Industrial		
<input type="checkbox"/> Other, specify		<input type="checkbox"/> Other, specify		

Construction Record - Casing

Inside Diameter (cm/in)	Open Hole OR Material (Galvanized, Fibreglass, Concrete, Plastic, Steel)	Wall Thickness (cm/in)	Depth (m/ft) From	To	Status of Well
					<input type="checkbox"/> Water Supply
					<input type="checkbox"/> Replacement Well
					<input type="checkbox"/> Test Hole
					<input type="checkbox"/> Recharge Well
					<input type="checkbox"/> Dewatering Well
					<input type="checkbox"/> Observation and/or Monitoring Hole
					<input type="checkbox"/> Alteration (Construction)
					<input type="checkbox"/> Abandoned, Insufficient Supply
					<input type="checkbox"/> Abandoned, Poor Water Quality
					<input checked="" type="checkbox"/> Abandoned, other, specify not in use
					<input type="checkbox"/> Other, specify

Construction Record - Screen

Outside Diameter (cm/in)	Material (Plastic, Galvanized, Steel)	Slot No.	Depth (m/ft) From	To

Water Details

Water found at Depth (m/ft)	Kind of Water: <input type="checkbox"/> Fresh <input type="checkbox"/> Untested <input type="checkbox"/> Gas <input type="checkbox"/> Other, specify	Depth (m/ft) From	To	Hole Diameter Depth (m/ft) From	Diameter (cm/in)

Well Contractor and Well Technician Information

Business Name of Well Contractor **2024257 ONTARIO LTD** Well Contractor's Licence No. **41102**

Business Address (Street Number/Name) **3661 Mt Albert Rd** Municipality **Sharon**

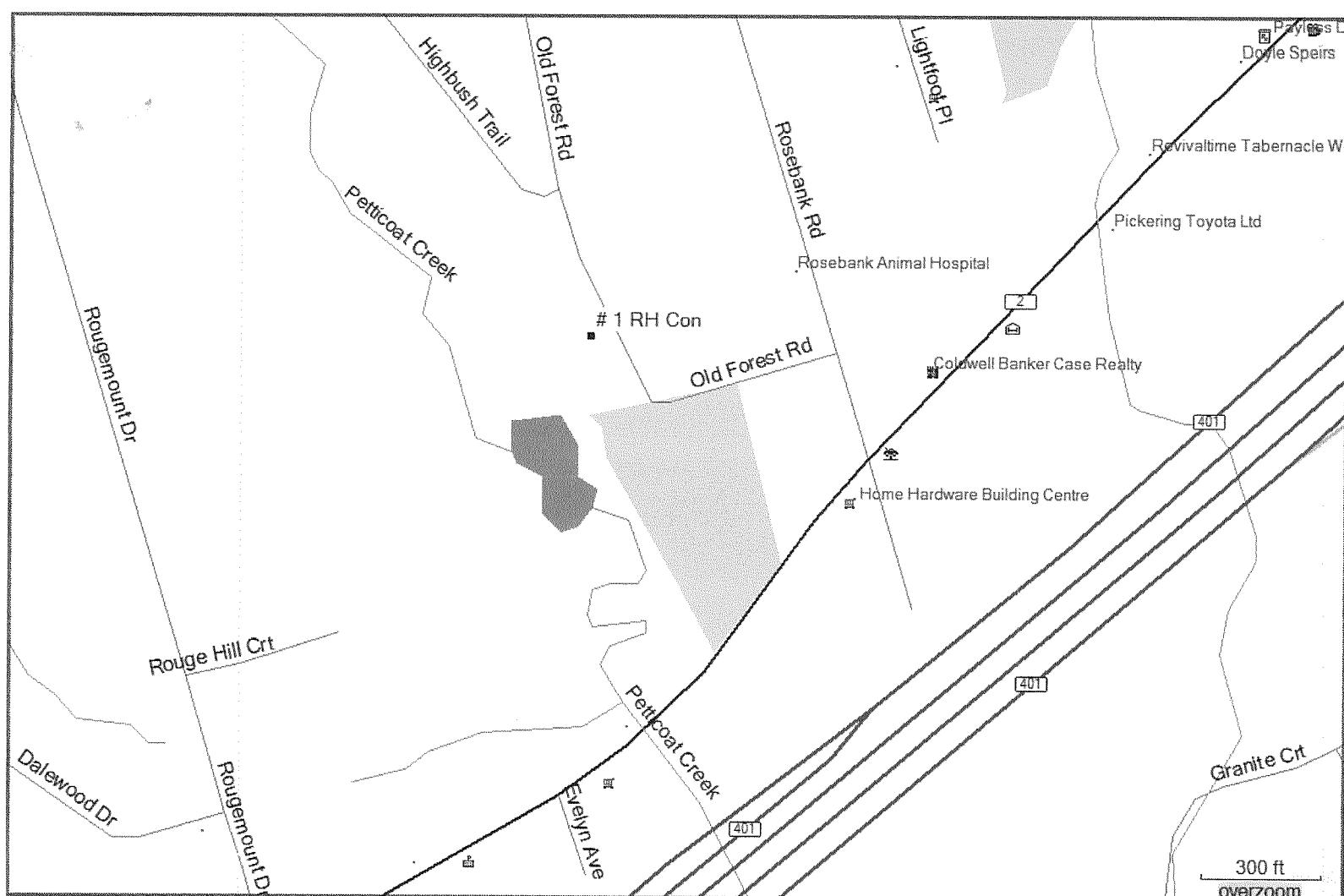
Province **ON** Postal Code **40111** Business E-mail Address **sales@ontariodrilling.com**

Bus. Telephone No. (inc. area code) **905 478 1643** Name of Well Technician (Last Name, First Name) **MOORE, DAVID**

Well Technician's Licence No. **212919** Signature of Technician and/or Contractor **David Moore** Date Submitted **2014/08/15**

Results of Well Yield Testing

After test of well yield, water was:	Draw Down	Recovery
<input type="checkbox"/> Clear and sand free	Time (min)	Water Level (m/ft)
<input type="checkbox"/> Other, specify	Time (min)	Water Level (m/ft)
If pumping discontinued, give reason:		
Static Level		
1		1
2		2
3		3
4		4
5		5
10		10
15		15
20		20
25		25
30		30
40		40
50		50
60		60


Map of Well Location

Please provide a map below following instructions on the back.

Comments:

Well owner's information package delivered	Date Package Delivered	Ministry Use Only
<input type="checkbox"/> Yes	Y Y Y Y M M D D	Audit No.
<input type="checkbox"/> No	2014/07/29	z 154883

C-4102
254883

©2003 Garmin Ltd. or its subsidiaries

©2003 DMTI Spatial Inc.

CanMap®, DMTI Spatial and the DMTI Spatial logo are trademarks of DMTI Spatial Inc., Markham, Ontario

MARSHALL HOMES

Annular Space			
Depth Set at (m) From	To	Type of Sealant Used (Material and Type)	Volume Placed (m ³ /ft ³)
Ø	24'	Bentonite.	

Results of Well Yield Testing			
After test of well yield, water was: <input type="checkbox"/> Clear and sand free <input type="checkbox"/> Other, specify _____	Draw Down		Recovery
	Time (min)	Water Level (m/ft)	Time (min)
If pumping discontinued, give reason: Pump intake set at (m/ft) Pumping rate (l/min / GPM) Duration of pumping _____ hrs + _____ min Final water level end of pumping (m/ft) If flowing give rate (l/min / GPM) Recommended pump depth (m/ft) Recommended pump rate (l/min / GPM) Well production (l/min / GPM) Disinfected? <input type="checkbox"/> Yes <input type="checkbox"/> No	Static Level		
	1		1
	2		2
	3		3
	4		4
	5		5
	10		10
	15		15
	20		20
	25		25
	30		30
	40		40
50		50	
60		60	

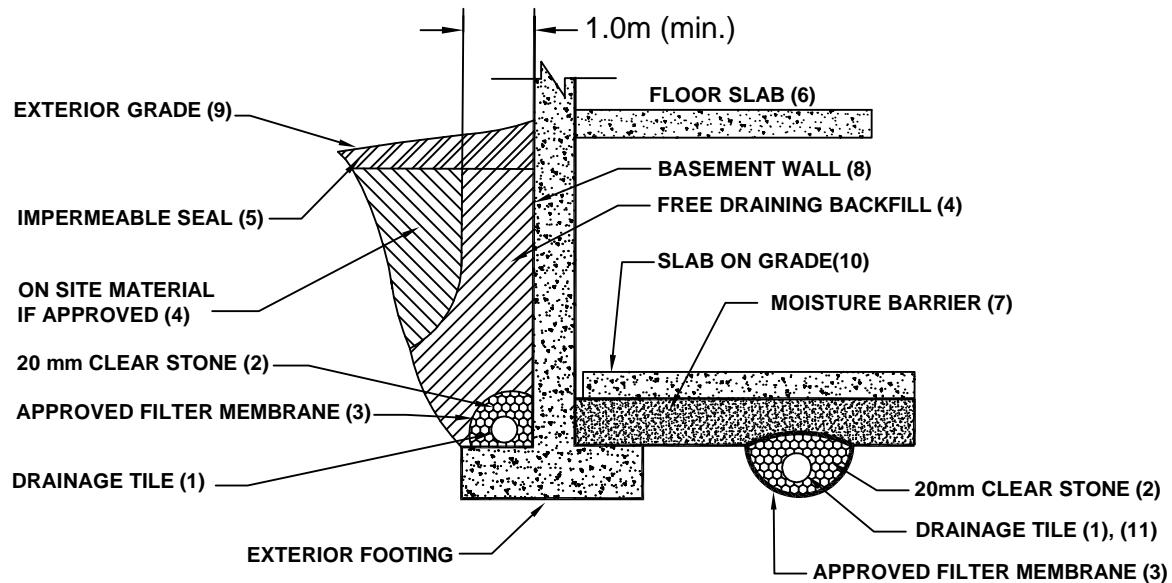
Method of Construction		Well Use			
<input type="checkbox"/> Cable Tool	<input type="checkbox"/> Diamond	<input type="checkbox"/> Public	<input type="checkbox"/> Commercial		
<input type="checkbox"/> Rotary (Conventional)	<input type="checkbox"/> Jetting	<input type="checkbox"/> Domestic	<input type="checkbox"/> Municipal		
<input type="checkbox"/> Rotary (Reverse)	<input type="checkbox"/> Driving	<input type="checkbox"/> Livestock	<input type="checkbox"/> Test Hole		
<input type="checkbox"/> Boring	<input type="checkbox"/> Digging	<input type="checkbox"/> Irrigation	<input type="checkbox"/> Cooling & Air Conditioning		
<input type="checkbox"/> Air percussion		<input type="checkbox"/> Industrial			
<input type="checkbox"/> Other, specify _____		<input type="checkbox"/> Other, specify _____			
Construction Record - Casing					
Inside Diameter (cm/in)	Open Hole OR Material (Galvanized, Fibreglass, Concrete, Plastic, Steel)	Wall Thickness (cm/in)	Depth (m/ft)		Status of Well
			From	To	
					<input type="checkbox"/> Water Supply
					<input type="checkbox"/> Replacement Well
					<input type="checkbox"/> Test Hole
					<input type="checkbox"/> Recharge Well
					<input type="checkbox"/> Dewatering Well
					<input type="checkbox"/> Observation and/or Monitoring Hole
					<input type="checkbox"/> Alteration (Construction)
					<input type="checkbox"/> Abandoned,
					<input type="checkbox"/> In Use

Map of Well Location	
Please provide a map below following instructions on the back.	
Comments:	
Well owner's information package delivered	Date Package Delivered Y Y Y X M M D O Date Work Completed S C U R E D
Ministry Use Only	
Audit No. 318159 JUL 24 2019	

Construction Record - Screen				
Outside Diameter (cm/in)	Material (Plastic, Galvanized, Steel)	Slot No.	Depth (m/ft)	
			From	To

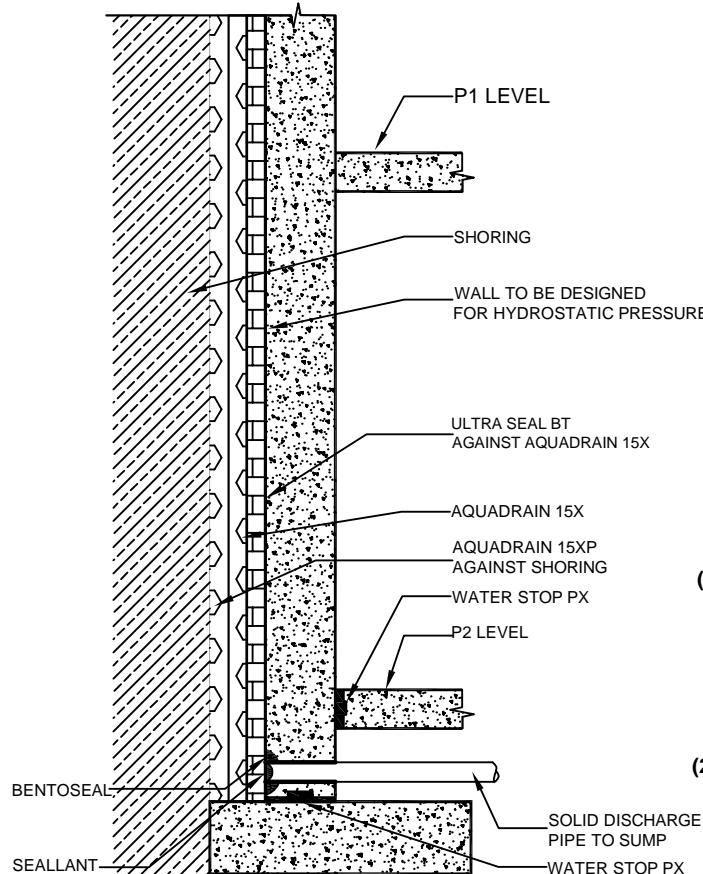
Insufficient Supply Abandoned, Poor Water Quality Abandoned, other, specify Docom Other, specify _____

Water Details		Hole Diameter	
Water found at Depth (m/ft)	Kind of Water: <input type="checkbox"/> Fresh <input type="checkbox"/> Untested <input type="checkbox"/> Other, specify _____	Depth (m/ft) From	Diameter (cm/in) To
Water found at Depth (m/ft)	Kind of Water: <input type="checkbox"/> Fresh <input type="checkbox"/> Untested <input type="checkbox"/> Other, specify _____	24'	
Water found at Depth (m/ft)	Kind of Water: <input type="checkbox"/> Fresh <input type="checkbox"/> Untested <input type="checkbox"/> Other, specify _____		


Comments:	
Well owner's information package delivered	Date Package Delivered
	Y Y Y Y M M D O
<input type="checkbox"/> Yes	
<input checked="" type="checkbox"/> No	
Date Work Completed 06/15/19	
Ministry Use Only	
Audit No. 318159 JUL 24 2019	

APPENDIX H – DRAINAGE GUIDELINES

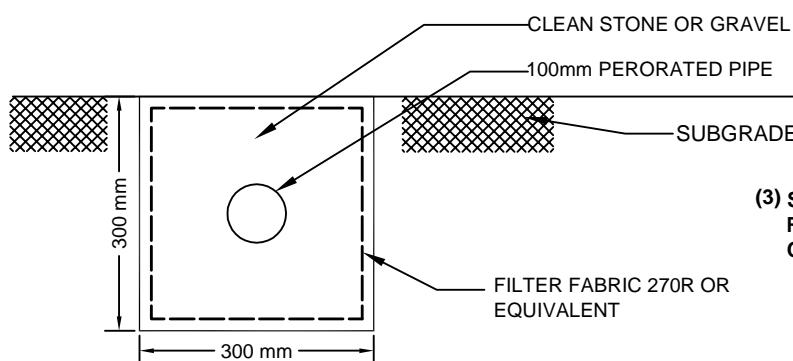
F i s h e r E n g i n e e r i n g L i m i t e d


Project No. FH24-14411_V2 March 7, 2025

NOTES:

- (1) DRAINAGE TILE TO CONSIST OF 100mm (4") DIAMETER WEEPING TILE OR EQUIVALENT PERFORATED PIPE LEADING TO A POSITIVE SUMP OR OUTLET.
- (2) 20mm (3/4") CLEAR STONE - 150mm (6") TOP AND SIDE OF DRAIN. IF DRAIN IS NOT ON FOOTING, PLACE 100mm (4") OF STONE BELOW DRAIN.
- (3) WRAP THE CLEAR STONE WITH AN APPROVED FILTER MEMBRANE (TERRAFIX 279R OR EQUIVALENT).
- (4) FREE DRAINING BACKFILL - OPSS GRANULAR B OR EQUIVALENT COMPACTED TO THE SPECIFIED DENSITY. DO NOT USE HEAVY COMPACTION EQUIPMENT WITHIN 1.8m (6') OF WALL.
- (5) IMPERMEABLE BACKFILL SEAL - COMPACTED CLAY, CLAYEY SILT OR EQUIVALENT. IF ORIGINAL SOIL IS FREE-DRAINING, SEAL MAY BE OMITTED. MAXIMUM THICKNESS OF SEAL TO BE 0.5m.
- (6) DO NOT BACKFILL UNTIL WALL IS SUPPORTED BY BASEMENT AND FLOOR SLABS OR ADEQUATE BRACING.
- (7) MOISTURE BARRIER TO BE AT LEAST 200mm (8") OF COMPACTED CLEAR 20mm (3/4") STONE OR EQUIVALENT FREE DRAINING MATERIAL. A VAPOUR BARRIER MAY BE REQUIRED FOR SPECIALTY FLOORS.
- (8) BASEMENT WALL TO BE DAMP PROOFED.
- (9) EXTERIOR GRADE TO SLOPE AWAY FROM BUILDING.
- (10) SLAB ON GRADE SHOULD NOT BE STRUCTURALLY CONNECTED TO THE WALL OR FOOTING
- (11) UNDERFLOOR DRAIN INVERT TO BE AT LEAST 300mm (12") BELOW UNDERSIDE OF FLOOR SLAB. DRAINAGE TILE PLACED IN PARALLEL ROWS 6 TO 8m (20-25') CENTERS ONE WAY. PLACE DRAIN ON 100mm (4") CLEAR STONE WITH 150mm (6") OF CLEAR STONE ON TOP AND SIDES. ENCLOSURE STONE WITH FILTER FABRIC AS NOTED IN (3)
- (12) THE ENTIRE SUBGRADE TO BE SEALED WITH APPROVED FILTER FABRIC (TERRAFIX 270R OR EQUIVALENT) IF NON-COHESIVE(SANDY) SOILS BELOW GROUND WATER TABLE ENCOUNTERED.
- (13) DO NOT CONNECT THE UNDERFLOOR DRAINS TO PERIMETER DRAINS.
- (14) REVIEW THE GEOTECHNICAL REPORT FOR SPECIFIC DETAILS.

DRAINAGE AND BACKFILL RECOMMENDATIONS
BASEMENT WITH UNDERFLOOR DRAINAGE
(NOT TO SCALE)



NOTES:

- (1) ALL PERMANENT DRAINAGE PIPES MUST HAVE GEOTEXTILE FILTER SLEEVE TO PREVENT LONG TERM SILTING. TO FURTHER MINIMIZE SILTING OF THE DRAINAGE SYSTEM, ALL DRAINAGE PIPE CONNECTION MUST BE SOLID PVC ELBOWS AND Ts. NO "BUTT" END CONNECTIONS SHOULD BE PERMITTED.

- (2) PERIMETER COLLECTION PIPE TO BE SOLID PIPE,

SUGGESTED EXTERIOR DRAINAGE AGAINST SHORING
(NOT TO SCALE)

- (3) SUBGRADE DRAIN TO BE PLACED IN PARALLEL ROWS 6-8 m (20'-25'), FROM CENTERLINE TO CENTERLINE.

DETAIL OF SUBGRADE DRAIN
(NOT TO SCALE)